Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Việt Trì - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm 03 trang, hình thức 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 150 phút, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Việt Trì – Phú Thọ : + Một công ty cổ phần cấp nước áp dụng định mức tiêu thụ nước mỗi người là 4m3/người/tháng và đơn giá được cho bởi bảng sau: Lượng nước tiêu thụ (m3) Giá cước (đồng/m3). Đến 4m3/người/tháng 5300. Trên 34m/người/tháng đến 36m/người/tháng 10200. Trên 36m/người/tháng 11400. Gia đình bạn An có 9 người. Trong tháng 7 năm 2017, gia đình bạn An phải trả tiền nước theo hóa đơn là 653430 đồng (hóa đơn này bao gồm thuế giá trị gia tăng (VAT) 5% và 10% phí bảo vệ môi trường). Lượng nước máy mà nhà bạn An đã sử dụng trong tháng 7 năm 2017 là? + Cho nửa đường tròn O R đường kính BC. Điểm A di động trên nửa đường tròn đã cho (A khác BC), vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB AC và nửa đường tròn O R lần lượt tại D E M. Đường thẳng AM cắt đường thẳng BC tại N. a) Chứng minh rằng AME ACN và 3 2 BC BD CE. b) Chứng minh rằng ba điểm D E N thẳng hàng. c) Xác định vị trí của điểm A trên nửa đường tròn đã cho để tam giác ABH có diện tích lớn nhất. + Trên Parabol 24 x P y lấy các điểm PQ có hoành độ lần lượt là 2 và 4. Biết M là điểm nằm trên trục Ox sao cho MP MQ nhỏ nhất. Tọa độ điểm M là?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa
Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.
Đề thi HSG huyện Toán 9 năm 2018 - 2019 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2018 – 2019 phòng Giáo dục và Đào tạo Thạch Hà, tỉnh Hà Tĩnh, đề thi gồm 01 trang được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Qua điểm O nằm trong tam giác ABC ta vẽ 3 đường thẳng song song với 3 cạnh tam giác. Đường thẳng song song với cạnh AB cắt cạnh AC, BC lần lượt tại E và D; đường thẳng song song với cạnh BC cắt cạnh AB và AC lần lượt tại M và N; đường thẳng song song với cạnh AC cắt cạnh AB và BC lần lượt tại F và H. Biết diện tích các tam giác ODH, ONE, OMF lần lượt là a^2, b^2, c^2. a) Tính diện tích S của tam giác ABC theo a, b, c. b) Chứng minh S ≤ 3(a^2 + b^2 + c^2). [ads] + Cho đa thức f(x), tìm dư của phép chia f(x) cho (x – 1)(x + 2). Biết rằng f(x) chia cho x – 1 dư 7 và f(x) chia cho x + 2 dư 1. + Cho 3 số a, b, c khác 0 thỏa mãn a + b + c = 0. Chứng minh hằng đẳng thức: √(1/a^2 + 1/b^2 + 1/c^2) = |1/a + 1/b + 1/c|.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 22 tháng 04 năm 2018. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) Tứ giác BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định. + Cho biểu thức với x y 0 0 a) Rút gọn biểu thức A. b) Biết xy = 16. Tìm các giá trị của x, y để A có giá trị nhỏ nhất, tìm giá trị đó. + Tìm số tự nhiên n ≥ 1 sao cho tổng 1! + 2! + 3! + … + n! là một số chính phương.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 25/03/2018.