Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 11 năm 2023 - 2024 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Trong chiến dịch Điện Biên Phủ năm 1954, xe đạp thồ là phương tiện vận chuyển góp phần không nhỏ cho thắng lợi của chiến dịch. Xe đạp thồ của một anh dân công hoả tuyến sau khi gia cố thì đường kính của bánh xe bằng 70 cm. Trên một đoạn đường, anh để ý rằng có một vết phồng ở bánh xe cứ sau 2 giây lại cọ xát vào khung xe. Tính vận tốc của xe trên quãng đường đó. + Vay số tiền P theo thể thức lãi kép theo định kì (lãi kì này tính vào gốc của kì sau) với lãi suất r mỗi kì. Sau n kì, số tiền Pn phải trả (cả vốn lẫn lãi) bằng n (1) n PP r. Một học sinh thấy tờ rơi quảng cáo cho vay không thế chấp của công ty T&T với lãi suất kép “cứ vay 1 triệu đồng thì tiền lãi chỉ ba ngàn đồng mỗi ngày” nên đã vay 1 triệu đồng. Sau 1 tuần, học sinh đó đến trả tiền nhưng thấy tiền lãi ít nên không trả mà vay thêm 10 triệu đồng để mua điện thoại đời mới. Sau 1 năm tính từ ngày vay thêm (bằng 365 ngày), học sinh này đến trả nợ thì mới phát hoảng vì số tiền quá lớn. Tính số tiền học sinh này phải trả lúc đó. + Một đề thi gồm 5 câu hỏi ở dạng thức trắc nghiệm dạng Đúng/Sai. Mỗi câu hỏi có 04 ý, tại mỗi ý học sinh lựa chọn đúng hoặc sai. Cách thức tính điểm như sau: – Học sinh chỉ lựa chọn chính xác 01 ý trong 01 câu hỏi được 0,2 điểm. – Học sinh chỉ lựa chọn chính xác 02 ý trong 01 câu hỏi được 0,5 điểm. – Học sinh chỉ lựa chọn chính xác 03 ý trong 01 câu hỏi được 1 điểm. – Học sinh chỉ lựa chọn chính xác 04 ý trong 01 câu hỏi được 2 điểm. Một học sinh làm bài bằng cách chọn ngẫu nhiên tất cả các ý trả lời. Tính xác suất để học sinh đó được ít nhất 9 điểm.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 - 2019 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh khối 11 có năng khiếu môn Toán để bồi dưỡng, đào tạo và tạo điều kiện để các em được thử sức ở các cuộc thi cấp tỉnh, quốc gia … . Đề thi HSG Toán 11 có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra chất lượng đội tuyển Toán 11 năm 2018 – 2019 trường THPT Hậu Lộc 4 – Thanh Hóa : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A (-3;1), đỉnh C nằm trên đường thẳng Δ: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N (6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C): x^2 + y^2 = 25, đường thẳng AC đi qua điểm K (2;1). Gọi M, N là chân các đường cao kẻ từ đỉnh B và C. Tìm tọa độ các đỉnh tam giác ABC, biết phương trình đường thẳng MN là 4x – 3y + 10 = 0 và điểm A có hoành độ âm. + Cho hàm số y = x^2 + 2x – 3 (*) và đường thẳng d: y = 2mx – 4. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (*). Tìm m để d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn (x1 + m)/(x2 – 1) + (x2 + m)/(x1 – 1) = -6.
Đề kiểm tra chất lượng đội tuyển HSG Toán 11 năm học 2016 - 2017 trường Lê Lợi - Thanh Hóa lần 1
Đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2016 – 2017 trường THPT Lê Lợi – Thanh Hóa lần 1 gồm 6 câu tự luận. Các nội dung thi gồm: phương trình lượng giác, biện luận phương trình ẩn tham số m, giải phương trình vô tỉ, giải hệ phương trình, tổ hợp, hình học tọa độ phẳng và hình học không gian. Đề thi có lời giải chi tiết.