Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 9 năm 2022 - 2023 trường Thực hành Sài Gòn - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán 9 năm 2022 – 2023 trường Thực hành Sài Gòn – TP HCM : + Hàng năm, sau khi kết thúc kiểm tra học kỳ I, học sinh trường Trung học Thực hành Sài Gòn lại náo nức chào đón ngày Hội Xuân với nhiều hoạt động thú vị và ý nghĩa. Trong đó, hoạt động “Nhà kinh doanh tài ba” được các bạn khối lớp 9 mong đợi hơn cả. Các lớp sẽ mở các gian hàng trò chơi dân gian, quà lưu niệm, ẩm thực… và học sinh toàn trường sẽ mua các sản phẩm hoặc dịch vụ bằng phiếu do ban tổ chức phát hành. Sau khi trích một phần các khoản thu để gây quỹ trao quà Tết cho các bạn học sinh và người dân có hoàn cảnh khó khăn tại địa phương, các lớp sẽ được hoàn tiền từ số lượng phiếu thu được với số tiền 3 400 đồng cho mỗi phiếu. Năm nay, lớp 9A quyết định tổ chức gian hàng bán quà lưu niệm với tiền vốn là 5 400 000 đồng. Gọi x là số phiếu lớp 9A thu được từ gian hàng và y (đồng) là tổng số tiền nhận được tương ứng sau khi đã trừ vốn (khi y nhận giá trị âm, ta hiểu gian hàng của lớp 9A bị lỗ vốn). a) Viết công thức tính y theo x. b) Lớp 9A phải thu vào ít nhất bao nhiêu phiếu để không bị lỗ vốn? + Bạn Khánh là một người chăm chỉ luyện tập thể thao. Hai môn thể thao yêu thích của bạn là bơi lội và chạy bộ. Khánh tiêu thụ 15 calo cho mỗi phút bơi và 10 calo cho mỗi phút chạy bộ. Hôm nay, Khánh mất 1,5 giờ cho cả hai hoạt động trên và tiêu thụ hết 1200 calo. Hỏi hôm nay bạn Khánh đã dành bao nhiêu thời gian cho hoạt động chạy bộ? + Hai người ở hai vị trí A và B nhìn nóc một tòa nhà ở vị trí C với hai góc lần lượt là 0 30 và 0 45 so với phương ngang như hình dưới. Tính chiều cao CH của tòa nhà theo mét (làm tròn kết quả đến hàng phần trăm), biết rằng khoảng cách AB bằng 200m và ba điểm A B H thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 9 năm 2021 - 2022 trường M.V. Lômônôxốp - Hà Nội
Đề thi học kì 1 Toán 9 năm 2021 – 2022 trường M.V. Lômônôxốp – Hà Nội gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày … tháng 12 năm 2021. Trích dẫn đề thi học kì 1 Toán 9 năm 2021 – 2022 trường M.V. Lômônôxốp – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) 1) Vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy với m = 3. 2) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = -5x + 1. 3) Tìm m để đường thẳng (d) cắt đường thẳng (d2): y = 3x – 2 tại một điểm nằm bên phải của trục tung. + Ở siêu thị có một thang máy cuốn (như hình vẽ) nhằm giúp khách hàng di chuyển từ tầng này lên tầng kế của siêu thị rất tiện lợi. Biết rằng thang cuốn này được thiết kế có độ nghiêng so với phương ngang một góc BAC bằng 35° và quãng đường di chuyển từ tầng một lên tầng hai (theo phương chuyển động của thang cuốn) AB = 10m. Hỏi khoảng cách giữa hai tầng của siêu thị là bao nhiêu mét? (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O; R), đường kính AB. Qua A kẻ tia tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C bất kì (C khác A). Từ điểm C kẻ tiếp tuyến CM với đường tròn (O) (M là tiếp điểm). a) Chứng minh: Bốn điểm C, M, O, A cùng thuộc một đường tròn. b) Gọi N là giao điểm thứ hai của CB với đường tròn (O). Chứng minh tam giác ANB vuông và CN.CB = CM2. c) Từ O kẻ tia Oy vuông góc với MB, cắt tia CM tại H. Chứng minh: HB là tiếp tuyến của đường tròn (O). d) Gọi E và F lần lượt là trung điểm của CA và CM. Trên đoạn thẳng EF lấy điểm K, kẻ tiếp tuyến KT với đường tròn (O) (T là tiếp điểm). Chứng minh: KC = KT.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Hàm Rồng - Thanh Hóa
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Hàm Rồng – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi cuối HK1 Toán 9 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
Đề thi cuối HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho hàm số bậc nhất y = (m – 1)x + 4 (m khác 1) có đồ thị là đường thẳng d. a/ Tìm m để đường thẳng d song song với đường thẳng y = 2x + 1. b/ Vẽ đồ thị với m tìm được ở câu a. c/ Đường thẳng d cắt trục Ox tại A, cắt trục Oy tại B. Tìm m để diện tích tam giác DAB bằng 2. + Một cầu trượt trong công viên có độ dốc so với mặt đất là 28° và độ cao là 2,1m. Tính độ dài của mặt cầu trượt? (Làm tròn đến chữ số thập phân thứ nhất). + Cho các số thực dương x, y, z thỏa mãn: xy + yz + xz = 1. Tìm GTNN của biểu thức: A = 10(x^2 + y^2) + z^2.
Đề thi học kì 1 Toán 9 năm học 2020 - 2021 sở GDĐT Thái Bình
Thứ Sáu ngày 08 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán 9 năm học 2020 – 2021 sở GD&ĐT Thái Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học kì 1 Toán 9 năm học 2020 – 2021 sở GD&ĐT Thái Bình : + Cho hình vẽ bên, tính độ dài đoạn thẳng AB (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho hàm số y = (m – 1)x + m + 2 (1). a) Tìm m để hàm số (1) là hàm số bậc nhất. b) Tìm m để đồ thị hàm số (1) cắt đường thẳng y = 5x – 3. c) Tìm m để đồ thị hàm số (1) đi qua điểm M(1;2). Với giá trị của m tìm được, hãy tính khoảng cách từ gốc tọa độ O của mặt phẳng tọa độ Oxy đến đồ thị hàm số (1). + Cho nửa đường tròn tâm O, có đường kính AB = 8 cm, dây cung AC = 4 cm và I là trung điểm của BC. Tiếp tuyến tại B của đường tròn tâm O cắt tia Ox tại D. Gọi CH là đường cao của tam giác ABC. a) Tính độ dài các đoạn thẳng BC và CH. b) Chứng minh rằng BD = DC và đường thẳng D là tiếp tuyến của đường tròn tâm O. c) Chứng minh rằng bốn điểm C, H, O, K cùng thuộc một đường tròn. d) Gọi I là trung điểm của CH, tiếp tuyến tại A của đường tròn tâm O cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng.