Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hương Trà TT Huế

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hương Trà TT Huế Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Hương Trà - TT Huế Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Hương Trà - TT Huế Sytu xin chào quý thầy, cô giáo và các em học sinh lớp 9. Đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Hương Trà, tỉnh Thừa Thiên Huế tổ chức. Đề thi bao gồm 01 trang với 05 bài toán hình thức 100% tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi: + Cho phương trình: x² - 2mx + m² - m - 6 = 0 (m là tham số). Với giá trị nào của m thì phương trình có hai nghiệm x1 và x2 sao cho |x1| + |x2| = 8. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn (x + y)³ = (x - y - 6)². + Cho tam giác ABC vuông tại A có phân giác AD. Gọi M, N lần lượt là hình chiếu của B, C lên đường thẳng AD. Chứng minh rằng: 2AD < BM + CN. + Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. a) Chứng minh tam giác EMF là tam giác cân. b) Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng. c) Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Nha Trang - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Nha Trang, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Sáu ngày 23 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Nha Trang – Khánh Hòa : + Chứng minh rằng nếu n + 1 và 2n + 1 (n thuộc N) đều là số chính phương thì n chia hết cho 24. + Hai đội bóng bàn A và B của hai trường trung học cơ sở thi đấu giao hữu. Biết rằng mỗi đấu thủ của đội A phải lần lượt gặp đấu thủ của đội B một lần và số trận đấu gấp đôi tổng số đấu thủ của hai đội. Tính số đấu thủ của mỗi đội. + Giả sử mỗi điểm trong mặt phẳng được tô bằng một trong hai màu trắng hoặc đen. Chứng minh tồn tại một hình chữ nhật có đỉnh cùng màu.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 09 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng, giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh). Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Rút gọn biểu thức A. b) Cho các số thực a, b, c thỏa mãn a2 + b2 = 2. Tính giá trị của biểu thức P. c) Phân tích đa thức x(x + 2)(x2 + 2x + 2) + 1 thành nhân tử. + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. + Các điểm E và F lần lượt là trung điểm của các cạnh AB, AD của hình bình hành ABCD. Các đoạn thẳng CE và BF cắt nhau tại K. Qua điểm D kẻ đường thẳng song song với CE cắt đường thẳng AB tại N. Tia BF cắt DN tại P. a) Chứng minh rằng BE = 1/2.EN và KP = 2BK. b) Chứng minh rằng KF/KP = 3/4. c) Lấy điểm M thuộc đoạn CE sao cho BM song song với KD. Chứng minh rằng diện tích tam giác KFD bằng diện tích tứ giác BKDM.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Nguyễn Trường Tộ – Hà Nội : + Cho biểu thức P. a) Tìm điều kiện xác định và rút gọn biểu thức P. b) So sánh P với 5. c) Với mọi giá trị của x để biểu thức P có nghĩa, chứng minh biểu thức 8/P chỉ nhận đúng một giá trị nguyên. + Tìm hai số tự nhiên liên tiếp, mỗi số có hai chữ số, biết rằng nếu viết số lớn trước số nhỏ thì ta được một số chính phương. + Lấy 4 điểm ở miền trong của một tứ giác để cùng với 4 đỉnh của tứ giác đó ta được 8 điểm, trong đó không có 3 điểm thẳng hàng. Biết diện tích tứ giác bằng 1. Chứng minh rằng: Tồn tại một tam giác có 3 đỉnh lấy từ 8 điểm đã cho có diện tích không vượt quá 1/10.