Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề kiểm tra đánh giá Toán 12 năm 2021 - 2022 sở GDĐT Bắc Kạn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra đánh giá kết quả ôn tập của học sinh lớp 12 môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Kạn; kỳ thi được diễn ra vào ngày 23 tháng 05 năm 2022; nhằm mục đích chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2022 sắp tới. Trích dẫn đề kiểm tra đánh giá Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Kạn : + Trong không gian Oxyz cho điểm M(1;2;3). Mặt phẳng (P) đi qua M cắt các trục tọa độ Ox; Oy; Oz lần lượt tạiA; B; C sao cho M là trọng tâm của tam giác ABC. Phương trình mặt phẳng (P) là? + Cho hai mặt phẳng (P); (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R = 2a thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P) và (Q) để diện tích xung quanh của hình nón là lớn nhất là? + Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu (S1): x2 + y2 + z2 = 1, (S2): x2 + (y – 4)2 + z2 = 4 và các điểm A(4;0;0), B(1/4,0,0), C(1;4;0), D(4;4;0). Gọi M là điểm thay đổi trên (S1), N là điểm thay đổi trên(S2). Giá trị nhỏ nhất của MA + 2ND + 4MN + 4BC là?
Đề khảo sát chất lượng Toán 12 THPT năm 2021 - 2022 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?
20 đề ôn thi tốt nghiệp THPT năm 2022 môn Toán mức độ 7 điểm
Tài liệu gồm 107 trang, tuyển tập 20 đề ôn thi tốt nghiệp THPT năm học 2021 – 2022 môn Toán mức độ 7 điểm (có đáp án). MỤC LỤC : PHẦN ĐỀ BÀI 2. Đề 1: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 2. Đề 2: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 7. Đề 3: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 12. Đề 4: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 17. Đề 5: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 22. Đề 6: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 27. Đề 7: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 32. Đề 8: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 37. Đề 9: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 42. Đề 10: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 48. Đề 11: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 53. Đề 12: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 58. Đề 13: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 63. Đề 14: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 68. Đề 15: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 73. Đề 16: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 78. Đề 17: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 83. Đề 18: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 88. Đề 19: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 93. Đề 20: Đề thi thử tốt nghiệp THPT – Năm học 2021 – 2022 98. PHẦN ĐÁP ÁN 103.