Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 - 2019 môn Toán sở GD và ĐT Hà Tĩnh

Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh gồm 2 bài thi diễn ra trong hai ngày 20 và 21 tháng 9 năm 2018, đề thứ nhất gồm 4 bài toán tự luận, đề thứ hai gồm 4 bài toán tự luận, mỗi bài thi diễn ra trong thời gian 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh : + Cho một khung sắt có hình dạng là một tứ diện đều mỗi cạnh có độ dài 1 mét. Một con bọ ban đầu ở tại một đỉnh của tứ diện, bắt đầu di chuyển liên tục trên các cạnh của tứ diện theo quy tắc: tại mỗi đỉnh nó đến, nó sẽ chọn một trong ba cạnh tại đỉnh đó và di chuyển theo cạnh đó đến đỉnh tiếp theo. Với mỗi số nguyên dương n, tìm số cách đi của con bọ để nó trở lại đúng đỉnh ban đầu sau khi đã đi được đúng n mét. [ads] + Cô giáo có tất cả 2020 viên kẹo gồm 20 loại kẹo khác nhau, mỗi loại ít nhất có 2 viên kẹo. Cô chia hết kẹo cho các học sinh của mình, mỗi người một số viên kẹo và không có học sinh nào nhận được nhiều hơn một viên kẹo ở một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kì so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kì đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M. Với giả thiết tương tự nhưng thay 20 loại kẹo khác nhau bởi 19 loại kẹo khác nhau, hãy tìm giá trị nhỏ nhất của M trong trường hợp tương ứng này. + Cho k là số tự nhiên lớn hơn 1. Xét dãy số (an) xác định bởi: a0 = 0, a1 = 1 và an+1 = kan + an-1 với mọi n ∈ N*. Xác định tất cả các giá trị của k sao cho tồn tại các số tự nhiên m, n (với m ≠ n) và các số nguyên dương p, q thỏa mãn điều kiện: am + kap = an + kaq.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT An Giang
Sáng thứ Bảy ngày 06 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề), các dạng toán gồm: Cấp số cộng và cấp số nhân, Phương trình lượng giác, Bài toán đếm, Hình học không gian, Giải và biện luận bất phương trình. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang : + Bốn số lập thành một cấp số cộng, lần lượt trừ mỗi số ấy cho 2, 6, 7, 2 ta nhận được một cấp số nhân. Tìm bốn số đó. [ads] + Một đa giác đều (H) có 20 cạnh. Xét các tam giác có ba đỉnh lấy từ các đỉnh của (H). a. Có bao nhiêu tam giác có đúng một cạnh là cạnh của (H). b. Có bao nhiêu tam giác không có cạnh nào là cạnh của (H). + Cho hàm số y = f(x) = x^2 + bx + 1 với b là tham số. Xét bất phương trình f(f(x) + x) < 0. a. Giải bất phương trình khi b = 2 và b = 3. b. Tìm b để bất phương trình có đúng một nghiệm nguyên.
Đề thi học sinh giỏi Toán 12 năm học 2019 - 2020 sở GDĐT Đà Nẵng
Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng mã đề 102 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, học sinh làm bài bằng cách chọn và tô kín một ô tròn trên phiếu trả lời trắc nghiệm tương ứng với phương án trả lời đúng của mỗi câu. Trích dẫn đề thi học sinh giỏi Toán 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng : + Trong không gian Oxyz, cho mặt phẳng (P): ax + by + cz + 7 = 0 qua điểm A(2;0;1), vuông góc với mặt phẳng (Q): 3x – y + z + 1 = 0 và tạo với mặt phẳng (R): x – y + 2z – 1 = 0 một góc 60°. Tổng a + b + c bằng? [ads] + Cho hình chóp S.ABCD có đường cao SA = 4a. Biết đáy ABCD là hình thang vuông tại A và B với AB = BC = 3a, AD = a. Gọi M là trung điểm của cạnh AB và (alpha) là mặt phẳng qua M vuông góc với AB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (alpha) là đa giác có diện tích bằng? + Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên abcdef có sáu chữ số đôi một khác nhau mà mỗi số đều thỏa mãn d + e + f – a – b – c = 1?
Đề thi HSG cấp tỉnh Toán 12 năm học 2019 - 2020 sở GDĐT Bến Tre
Thứ Bảy ngày 30 tháng 05 năm 2020, sở Giáo dục và Đào tạo Bến Tre tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 THPT môn Toán năm học 2019 – 2020. Đề thi HSG cấp tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bến Tre gồm 05 bài toán dạng tự luận: phương trình lượng giác, hệ phương trình đại số, bài toán thường gặp về đồ thị, nhị thức Niu-tơn, GTNN của biểu thức, tính thể tích và khoảng cách. Trích dẫn đề thi HSG cấp tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bến Tre : + Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân tại C, AB = AA’ = a. Góc tạo bởi đường thẳng BC’ với mặt phẳng (ABB’A’) bằng 60°. Gọi M, N, P lần lượt là trung điểm của các cạnh BB’, CC’ và BC. Tính thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AM và NP theo a. [ads] + Cho hàm số: y = (x – 1)/(1 – 2x) có đồ thị (C). a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(1;0). b) Chứng minh đường thẳng d: x – y + m = 0 luôn cắt đồ thị hàm số (C) tại hai điểm phân biệt A, B với mọi m. Tìm m sao cho: AB = |OA + OB| với O là gốc tọa độ. + Cho khai triển: (1 + 2x)^10.(3 + 4x + 4x^2)^2 = a0 + a1x + x2x^2 + … + a14x^14. Tìm giá trị của a6.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Đồng Tháp
Chủ Nhật ngày 31 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Đồng Tháp gồm 05 bài toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Đồng Tháp : + Cho hình lăng trụ ABC.A’B’C’ có tam giác ABC vuông tại B, AB = a√2, BC = 2a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) trùng với trung điểm của BC. Góc giữa cạnh bên AA’ và mặt đáy bằng 60°. Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AA’, BC. [ads] + Trong mặt phẳng Oxy, cho hình vuông ABCD có tâm I. Biết E(2;3), F(-2;1) lần lượt là trung điểm của BC, ID và điểm A có tung độ dương. Tìm tọa độ trọng tâm G của tam giác ABC. + Cho hình chóp tam giác đều S.ABC thay đổi luôn nội tiếp mặt cầu tâm I có bán kính bằng 1. Tính giá trị lớn nhất của thể tích khối chóp S.ABC.