Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán đợt tháng 01 năm 2024 trường THPT Tiên Du 1 Bắc Ninh

Nội dung Đề khảo sát lớp 10 môn Toán đợt tháng 01 năm 2024 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán lớp 10 đợt tháng 01 năm học 2023 – 2024 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 23 tháng 01 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề khảo sát Toán lớp 10 đợt tháng 01 năm 2024 trường THPT Tiên Du 1 – Bắc Ninh : + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở ít nhất 140 người và ít nhất 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 5 triệu và một chiếc xe loại B cho thuê với giá 4 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng mỗi xe loại A chỉ chở tối đa 20 người và 0,6 tấn hàng. Mỗi xe loại B chở tối đa 10 người và 1,5 tấn hàng. + Một sợi dây có chiều dài 26m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đơn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và diện tích của hình tròn là nhỏ nhất? + Một quả bóng được đá lên từ độ cao 1m theo quỹ đạo là một cung parabol. Tính từ thời điểm quả bóng được đá lên thì tại thời điểm giây thứ nhất nó đạt độ cao 6m và tại thời điểm giây thứ ba nó đạt độ cao 12m. Tính độ cao của quả bóng đạt được tại thời điểm giây thứ năm (làm tròn đến hàng phần trăm)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 - 2015 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 10 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC. Gọi H K, lần lượt là chân đường cao hạ từ các đỉnh B C, của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết 1 3 5 1 5 5 H K phương trình đường thẳng BC là x 3 40 y và điểm B có hoành độ âm. + a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì 22 2 cos cos 2cos A C B. b) Cho các số thực dương a bc thỏa mãn abbcca 8. Tìm giá trị nhỏ nhất của biểu thức 3 1111 P abc a bb cc a 222. + Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f x ax bx c có a 0 2 b ac 4 0. Tìm điều kiện cần và đủ đối với các số mn p để với mọi f x thuộc E ta đều có g x f x m ax b n bx c p cx a cũng thuộc E.
Đề thi học sinh giỏi Toán 10 năm 2012 - 2013 trường THPT Thuận An - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi Toán 10 năm học 2012 – 2013 trường THPT Thuận An, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 năm 2012 – 2013 trường THPT Thuận An – TT Huế : + Cho phương trình 2 mx m x m 2 1 2 0 m là tham số 1. Tìm m để phương trình đã cho có một nghiệm. 2. Tìm m để phương trình đã cho có hai nghiệm thỏa mãn nghiệm này gấp hai lần nghiệm kia. + Cho tam giác ABC. Trên các cạnh AB, BC, CA lấy lần lượt các điểm M, N, P thỏa mãn AM AB BC 2 BN BC AC 3 CP CA 2. Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm. + Gọi a, b, c là độ dài ba cạnh của tam giác abc hhh là độ dài ba đường cao tương ứng ba cạnh đó; r là bán kính đường tròn nội tiếp tam giác đó.
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc Bản PDF Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc. Đề thi có mã đề 101, hình thức là trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài là 90 phút, không kể thời gian giao đề. Đề thi đã được trang bị đáp án. Đề thi bắt đầu bằng một bài toán liên quan đến một công ti sản xuất và bán máy tính, trong đó yêu cầu học sinh tìm ra số năm mà công ti bán được số lượng máy tính vượt mức 179 nghìn chiếc. Bài toán thứ hai liên quan đến việc tính toán học phí của một khóa học dựa trên số lượng học viên đăng kí. Cuối cùng, bài toán thứ ba đưa ra một tình huống về một lớp học gồm các học sinh giỏi Toán, Văn, và Anh, yêu cầu học sinh tính số học sinh giỏi ít nhất hai môn. Đề thi không chỉ giúp học sinh kiểm tra kiến thức mà còn khuyến khích họ tư duy sáng tạo và giải quyết vấn đề theo cách logic. Hy vọng rằng đề thi sẽ là cơ hội tốt để các em thể hiện khả năng và kiến thức của mình trong môn Toán. Chúc các em có kết quả tốt trong kỳ thi sắp tới!
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 bài thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT Nguyễn Thượng Hiền, thành phố Hồ Chí Minh (lần thứ 26). Bài thi bao gồm hai phần: phần chung dành cho tất cả các thí sinh và phần riêng dành cho học sinh lớp 10 chuyên Toán và không chuyên Toán. Trích dẫn một số câu hỏi từ đề thi HSG Toán lớp 10 năm 2022-2023 trường THPT Nguyễn Thượng Hiền - TP HCM: 1. Trong lớp 10A có 14 học sinh giỏi Toán, 10 học sinh giỏi Hóa, 8 học sinh giỏi Lý. Có bao nhiêu học sinh giỏi cả ba môn? Phân chia tất cả học sinh thành các tổ có số lượng thành viên bằng nhau. Việc này có thể thực hiện được không? Vì sao? 2. Xét tam giác NTH đều cạnh a. Gọi (X) là tập hợp tất cả điểm M thỏa mãn điều kiện MN.MH - MN.MT = 2MN^2. Hãy tính diện tích của tập hợp (X). 3. Cho tứ giác ABCD nội tiếp có các cặp cạnh đối không song song. Chứng minh rằng hai đường thẳng EK và FK vuông góc, với E là giao điểm của AB và CD, F là giao điểm của AC và BD, K là điểm giao của đường tròn ngoại tiếp các tam giác AFD và BFC.