Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 10 môn Toán năm 2022 2023 trường chuyên Lương Thế Vinh Đồng Nai

Nội dung Đề HSG lớp 10 môn Toán năm 2022 2023 trường chuyên Lương Thế Vinh Đồng Nai Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 năm 2022-2023 trường chuyên Lương Thế Vinh Đồng Nai Đề HSG Toán lớp 10 năm 2022-2023 trường chuyên Lương Thế Vinh Đồng Nai Xin chào quý thầy cô và các em học sinh lớp 10! Trong đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai, có những câu hỏi đầy thú vị đòi hỏi sự tư duy và logic cao. Trong đề thi, có câu hỏi về tam giác ABC không cân nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I), với điểm tiếp xúc của (I) là D, E, F tương ứng trên BC, CA, AB. Bạn cần chứng minh rằng OI và MN vuông góc nhau, ba đường thẳng MN, EF và AS đồng quy, cũng như đường thẳng qua K song song OI chia đôi EF. Ngoài ra, đề còn đề cập đến số nguyên dương an = 2^(n3 + 1) - 3^(n2 + 1) + 5^(n + 1). Bạn cần tìm các số nguyên tố p mà có vô hạn giá trị nguyên dương n mà an không chia hết cho p, và chứng minh rằng tồn tại vô hạn số nguyên tố p sao cho có giá trị nguyên dương n mà an chia hết cho p. Cuối cùng, đề còn liên quan đến các số thực đôi một khác nhau a1, a2, ..., an; b1, b2, ..., bn và công thức tính tích các số trên cột thứ i. Bạn cần chứng minh rằng đa thức P(x) - C là tích của n đa thức bậc nhất có hệ số ứng với x là 1, cũng như tích tất cả các số trên mỗi hàng cũng bằng nhau. Đề thi không chỉ là cơ hội để thể hiện kiến thức Toán mà còn là bài toán thách thức tư duy logic và sáng tạo của các em học sinh. Chúc các em thành công trong việc giải quyết các câu hỏi thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.