Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT Ninh Bình; đề thi gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn tâm O bán kính R. Dây cung BC cố định, không đi qua tâm O. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I, H lần lượt là trung điểm của BC và MN, BC cắt MN tại K. 1. Chứng minh bốn điểm O, M, N, I cùng thuộc một đường tròn và HK là tia phân giác của BHC. 2. Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở E. Chứng minh M, N, E thẳng hàng. 3. Đường thẳng ∆ qua điểm M và vuông góc với đường thẳng ON, cắt đường tròn (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để tứ giác AMPN là hình bình hành. + Tìm các số nguyên x, y thoả mãn: 2 y x 5x 7 3. + Cho một bảng ô vuông m x n (gồm m dòng và n cột). Cho quy tắc tô màu bảng ô vuông như sau: Mỗi ô vuông đơn vị được tô bằng màu đỏ hoặc màu xanh sao cho bất kì bảng ô vuông 2 x 3 hoặc 3 x 2 nào cũng có đúng hai ô được tô màu đỏ. a) Hãy chỉ ra một cách tô màu theo quy tắc trên cho bảng ô vuông 4 x 6 (Điền chữ Đ vào ô được tô màu đỏ, chữ X vào ô được tô màu xanh). b) Người ta đã tô bảng ô vuông 2021 x 2022 theo quy tắc trên. Hỏi bảng ô vuông này có bao nhiêu ô được tô màu đỏ?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Cao Bằng
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Một đoàn học sinh đi tham quan khu di tích lịch sử hang Pác Bó bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiều xe ô tô và có bao nhiêu học sinh đi tham quan, biết rằng số học sinh trên mỗi xe không quá 32 em. + Chứng minh rằng tổng A = 1 + 2 + 2^2 + … + 2^2019 chia hết cho 15. + Cho nửa đường tròn (O) có đường kính AB = 2R; CD là dây cung di động trên nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A; D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. a) Chứng minh tứ giác CFDH nội tiếp. b) Chứng minh: CF.CA = CH.CB. c) Gọi I là trung điểm của HF. Chứng minh tia OI là tia phân giác của góc COD. d) Chứng minh rằng khi dây cung CD di động trên nửa đường tròn, diện tích tam giác OID có giá trị không đổi.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Nghệ An
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP). + Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng. + Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.
Đề thi học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT An Giang
Ngày 20 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi cấp Trung học Cơ sở môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT An Giang gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tam giác ABC vuông tại A có đường phân giác trong BD (D thuộc AC). Đường tròn (BCD) cắt cạnh AB tại E. Chứng minh AE + AB = BC. + Cho bốn số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 4. Chứng minh bất đẳng thức: (a + 2)(b + 2) >= cd. + Cho tứ giác ABCD (AB không song song với CD) nội tiếp đường tròn (O) và M là điểm chính giữa của cung nhỏ AB. Các dây MC, MD cắt AB lần lượt tại các điểm F, E. a) Chứng minh tứ giác CDEF nội tiếp. b) Gọi I là giao điểm của MC và BD. Gọi J là giao điểm của MD và AC. Chứng minh: IJ song song với AB. c) Đường thẳng IJ cắt AD, BC, CD lần lượt tại các điểm P, Q, K. Chứng minh: KP.KQ = KI.KJ.