Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM Bản PDF Ngày … tháng 04 năm 2021, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề thi HK2 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 06 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d x y 1 0. a) Tính góc tạo bởi đường thẳng d và đường thẳng ∆ x 2 0. b) Viết phương trình đường tròn có tâm I(1;0) và tiếp xúc với đường thẳng d. c) Viết phương trình đường thẳng d’ song song với đường thẳng d và cắt hai trục tọa độ tại 2 điểm M, N sao cho diện tích tam giác OMN bằng 1 2. + Trong mặt phẳng tọa độ Oxy: a) Cho Elip chính tắc (E) có phương trình 2 2 x y 1 8 4. Xác định tọa độ các đỉnh và tính tâm sai của (E). b) Cho Elip (E) có F F1 2 là các tiêu điểm và với mọi M E thỏa MF MF 10 1 2. Viết phương trình chính tắc của (E) biết độ dài trục bé bằng 6.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh; đề được biên soạn theo dạng đề thi tự luận với 05 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng Oxy: a) Viết phương trình đường thẳng (Δ) qua điểm I(2; 3) và song song với đường thẳng (d): x + y – 1 = 0. b) Cho A(3;1), B(3;-1) và đường tròn (C): x2 + y2 = 1. Tìm tọa độ điểm M thuộc (C) sao cho góc (MA;MB) lớn nhất. + Trong mặt phẳng Oxy, viết phương trình đường tròn đi qua ba điểm A(1;1), B(-1;3), C(-1;1). + Trong mặt phẳng Oxy, cho elip (E): x^2/25 + y^2/9 = 1. Tìm độ dài hai trục và tọa độ các tiêu điểm.
Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Nam Duyên Hà - Thái Bình
Thứ Hai ngày 22 tháng 06 năm 2020, trường THPT Nam Duyên Hà, tỉnh Thái Bình tổ chức kỳ thi kết thúc học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Nam Duyên Hà – Thái Bình gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Nam Duyên Hà – Thái Bình : + Góc a thỏa mãn -90 độ < a < 0 độ có điểm biểu diễn nằm trong cung nào trong hình sau? A. cung nhỏ AB. B. cung nhỏ A’B’. C. cung nhỏ BA’. D. cung nhỏ B’A. + Đường thẳng (∆’) thỏa mãn (∆’) // (∆): 3x + 4y = 7, khoảng cách giữa (∆) và (∆’) bằng 2 và (∆’) gần gốc tọa độ nhất có phương trình là? + Biểu thức nào trong các biểu thức sau có bảng xét dấu như hình vẽ dưới đây?
Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Đặng Thúc Hứa - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Đặng Thúc Hứa – Nghệ An; đề thi có mã đề 872, gồm 04 trang với 28 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài thi là 90 phút. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Đặng Thúc Hứa – Nghệ An : + Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng d: 3x – 4y – 4 = 0 và điểm I(-1;2). a) Tính khoảng cách từ điểm I đến đường thẳng d. b) Viết phương trình đường tròn (C) nhận I làm tâm và cắt d theo một dây cung có độ dài bằng 8. [ads] + Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây đúng? A. Nếu b^2 + c^2 – a^2 < 0 thì góc A nhọn. B. Nếu b^2 + c^2 – a^2 > 0 thì góc A nhọn. C. Nếu b^2 + c^2 – a^2 < 0 thì góc A vuông. D. Nếu b^2 + c^2 – a^2 > 0 thì góc A tù. + Cho biểu thức A = (sin 2α + sin α)/(1 + cos 2α + cos α) với điều kiện của x để A có nghĩa. Rút gọn biểu thức A được biểu thức dưới dạng a.tan bα trong đó a và b là các số nguyên. Khi đó a + b bằng?
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 06 năm 2020, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường Lương Thế Vinh – Hà Nội mã đề 001 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi 90 phút. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường Lương Thế Vinh – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x – 4y + 2m = 0 và đường tròn (C): (x – 1)^2 + (y – 2)^2 = 4. Có tất cả bao nhiêu giá trị nguyên của tham số m để trên đường thẳng d tồn tại hai điểm M thỏa mãn từ M kẻ được hai tiếp tuyến MA, MB đến đường tròn (C) (A và B là các tiếp điểm) sao cho tam giác MAB là tam giác đều? [ads] + Tam giác ABC không đều có ba góc thỏa mãn sinA.cosB – cosA.sinB = 0. Khi đó: A. Tam giác ABC cân tại B. B. Tam giác ABC cân tại C. C. Tam giác ABC cân tại A. D. Tam giác ABC vuông tại A. + Trong mặt phẳng tọa độ Oxy, cho ba điểm A(1;2), B(3;-1), C(2;4). Điểm M thuộc đường thẳng x + y + 2 = 0 sao cho biểu thức |6MA – 5MB – 2MC| đạt giá trị nhỏ nhất. Hoành độ x0 của điểm M thỏa mãn?