Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa

Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát các môn văn hóa và khoa học lớp 9 môn Toán vòng 1 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Trích dẫn Đề khảo sát Toán 9 vòng 1 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Cho n là số tự nhiên lớn hơn 1 thỏa mãn n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng: n chia hết cho 5. + Cho tam giác ABC vuông tại A (AB < AC), H là chân đường vuông góc hạ từ A lên BC, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. 1) Chứng minh: Các tam giác ABM và CAP đồng dạng. 2) Gọi Q là chân đường vuông góc kẻ từ C lên AP. Chứng minh: HQN = 90°. 3) Đường thẳng HQ cắt MP tại I, gọi K là trung điểm của đoạn thẳng NI, G là trung điểm của đoạn thẳng HQ. Chứng minh: B, G, K thẳng hàng. + Các số nguyên dương 1; 2; …; 100 được chia thành 25 tập hợp (tập hợp nào cũng có ít nhất 1 phần tử). Chứng minh rằng tồn tại ba số nguyên dương thuộc cùng một trong những tập hợp đó sao cho ba số đó là độ dài ba cạnh của một tam giác.
Đề chọn HSG Toán 9 vòng 2 năm 2023 - 2024 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư Phạm Hà Nội, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2023.
Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương : + Cho đa thức A = 12×2 – 3y2 + 8xy + 2x + y biết rằng a, b là hai số nguyên dương thỏa mãn với x = a; y = b thì giá trị của đa thức A bằng 0. Chứng minh rằng: 6a + b + 1 là bình phương của một số nguyên. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE a) Chứng minh AB.CF = AC.AE. b) So sánh diện tích tứ giác AEMF và diện tích tam giác BMC. + Cho tam giác ABC, điểm D trên cạnh BC sao cho DC = 4.BD. Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF lớn nhất.
Đề chọn đội tuyển HSG Toán 9 vòng 2 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 21 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 2 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Tìm giá trị lớn nhất của biểu thức: P = 3a + ab + abc. + Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Đường thẳng qua F vuông góc với FO cắt đường thẳng BD tại S. Kẻ FH vuông góc với BD (H thuộc BD). 1. Chứng minh SFB đồng dạng SDF và SB.SD = SH.SO. 2. Chứng minh rằng FE là phân giác của BFD. Từ đó suy ra 1/BE² + 1/DE² = 2/EF². 3. Kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. + Xét tập T = {1; 2; 3; …; 10}. Chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x – y.