Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng Toán 12 từ cơ bản đến nâng cao - Trần Đình Cư

Tài liệu gồm 619 trang, được biên soạn bởi thầy giáo Trần Đình Cư, trình bày bài giảng môn Toán 12 từ cơ bản đến nâng cao, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12. CHƯƠNG 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ. BÀI 1. SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ. + Dạng 1. Cho hàm số y f x. Tìm các khoảng đồng biến và nghịch biến của hàm số. + Dạng 2. Dựa vào bảng biến thiên, tìm các khoảng đồng biến, nghịch biến của hàm số. + Dạng 3. Dựa vào đồ thị hàm số y f x hoặc y f x. Tìm các khoảng đồng biến, nghịch biến của hàm số. + Dạng 4. Tìm tham số m để hàm số đồng biến trên tập xác định. + Dạng 5. Tìm tham số m để hàm số đồ ng biến và nghịch biến trên tập con của trên khoảng có độ dài bằng l. + Dạng 6. Bài tập dành cho học sinh 8+, 9+. BÀI 2. CỰC TRỊ CỦA HÀM SỐ. + Dạng 1. Cho hàm số y f x. Tìm các điểm cực đại, cực tiểu, giá trị cực đại giá trị cực tiểu. + Dạng 2. Dựa vào bảng xét dấu của f x hoặc cho hàm số f x hoặc cho đồ thị f x bảng biến thiên của hàm số f x đồ thị của hàm số f x. Tìm các điểm cực trị của hàm số. + Dạng 3. Tìm tham số m để hàm số có cực trị, hàm số có cực trị thỏa điều kiện K. + Dạng 4. Viết phương trình đường thẳng đi qua các điểm cực trị. + Dạng 5. Bài tập dành cho học sinh điểm 8+, 9+. BÀI 3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. + Dạng 1. Tìm GTLN, GTNN của hàm số trên a b. + Dạng 2. Tìm GTLN, GTNN trên khoảng hoặc nửa khoảng. + Dạng 3. Dựa vào bảng biến thiên của hàm số y f x hoặc đồ thị hàm số. Tìm GTLN, GTNN của hàm số. + Dạng 4. Tìm tham số m để hàm số đạt giá trị lớn nhất, giá trị nhỏ nhất. + Dạng 5. Bài tập dành cho học sinh 8+, 9+. BÀI 4. ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. + Dạng 1. Dựa vào định nghĩa tìm các đường tiệm cận của đồ thị hàm số. + Dạng 2. Dựa vào bảng biến thiên của đồ thị hàm số tìm các đường tiệm cận. + Dạng 3. Cho hàm số y f x. Tìm các đường tiệm cận của đồ thị hàm số. + Dạng 4. Bài toán tìm tham số m liên quan đến đường tiệm cận. + Dạng 5. Bài tập dành cho học sinh điểm 8+, 9+. BÀI 5. ĐỒ THỊ CỦA HÀM SỐ. + Dạng 1. Cho đồ thị hàm số. Tìm hàm số. + Dạng 2. Cho bảng biến thiên. Yêu cầu tìm hàm số. + Dạng 3. Cho bảng biến thiên, đồ thị hàm số. Tìm và xác định dấu các tham số thuộc hàm số y f x. BÀI 6. TƯƠNG GIAO CỦA HAI ĐỒ THỊ VÀ TIẾP TUYẾN VỚI ĐỒ THỊ. + Dạng 1. Dựa vào đồ thị biện luận số nghiệm của phương trình. + Dạng 2. Dựa vào bảng biến thiên biện luận số nghiệm của phương trình. + Dạng 3. Tương giao của hai đồ thị. + Dạng 4. Phương trình tiếp tuyến tại điểm. + Dạng 5. Tiếp tuyến có hệ số góc. + Dạng 6. Phương trình tiếp tuyến đi qua. + Dạng 7. Bài tập dành cho học sinh điểm 8+, 9+. CHƯƠNG 2. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT. BÀI 1. LŨY THỪA. + Dạng 1. Tính, rút gọn và biến đổi biểu thức. + Dạng 2. So sánh đẳng thức và bất đẳng thức đơn giản. BÀI 2. HÀM SỐ LŨY THỪA. + Dạng 1. Tìm tập xác định và tính đạo hàm của hàm số. + Dạng 2. Tính đạo hàm. + Dạng 3. Sự biến thiên và nhận dạng đồ thị hàm số. BÀI 3. LOGARIT. + Dạng 1. Tính toán về logarit. + Dạng 2. So sánh hai số logarit. + Dạng 3. Đẳng thức logarit. + Dạng 4. Bài tập dành cho học sinh 8+, 9+. BÀI 4. HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT. + Dạng 1. Tìm tập xác định, tập giá trị của hàm số. + Dạng 2. Tính đạo hàm. + Dạng 3. So sánh, đẳng thức, bất đẳng thức. + Dạng 4. GTLN và GTNN của hàm số. + Dạng 5. Nhận dạng đồ thị. BÀI 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. + Dạng 1. Phương pháp đưa về cùng cơ số. + Dạng 2. Phương pháp đặt ẩn phụ. + Dạng 3. Phương pháp logarit hóa, mũ hóa. + Dạng 4. Sử dụng tính đơn điệu hàm số. + Dạng 5. Bài tập dành cho học sinh 8+, 9+. BÀI 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. + Dạng 1. Đưa về cùng cơ số. + Dạng 2. Phương pháp mũ hóa và logarit hóa. + Dạng 3. Phương pháp đặt ẩn phụ. + Dạng 4. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG 3. NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG. BÀI 1. NGUYÊN HÀM. + Dạng 1. Nguyên hàm đa thức. + Dạng 2. Nguyên hàm phân thức. + Dạng 3. Nguyên hàm căn thức. + Dạng 4. Nguyên hàm của hàm số lượng giác. + Dạng 5. Nguyên hàm hàm mũ, loga. + Dạng 6. Nguyên hàm từng phần. + Dạng 7. Bài tập dành cho học sinh 8+, 9+. BÀI 2.TÍCH PHÂN. + Dạng 1. Tích phân hữu tỉ. + Dạng 2. Tích phân vô tỉ. + Dạng 3. Tích phân lượng giác. + Dạng 4. Tích phân từng phần. + Dạng 5. Tích phân chứa dấu giá trị tuyệt đối. + Dạng 6. Tích phân ẩn cơ bản. + Dạng 7. Bài tập dành cho học sinh điểm 8+, 9+. BÀI 3. ỨNG DỤNG HÌNH HỌC TÍCH PHÂN. + Dạng 1. Tính diện tích giới hạn bởi 1 đồ thị. + Dạng 2. Tính diện tích giới hạn bởi 2 hai đồ thị. + Dạng 3. Tính thể tích vật thể tròn xoay dựa vào định nghĩa. + Dạng 4. Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi 1 đồ thị. + Dạng 5. Ứng dụng tích phân trong vật lý. + Dạng 6. Ứng dụng tích phân vào giải các bài toán thực tế. CHƯƠNG 4. SỐ PHỨC. BÀI 1. SỐ PHỨC. BÀI 2. CỘNG, TRỪ, NHÂN SỐ PHỨC. BÀI 3. PHÉP CHIA SỐ PHỨC. + Dạng 1. Phần thực – phần ảo & các phép toán. + Dạng 2. Tìm số phức z thỏa mãn điều kiện. + Dạng 3. Biểu diễn số phức. + Dạng 4. Tập hợp. + Dạng 5. Bài tập 8+, 9+. BÀI 4. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. + Dạng 1. Phương trình bậc hai hệ số thực. + Dạng 2. Phương trình quy về phương trình bậc hai. + Dạng 3. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG I. KHỐI ĐA DIỆN. BÀI 1. KHÁI NIỆM VỀ KHỐI ĐA DIỆN. BÀI 2. KHÁI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. BÀI 3. KHÁI NIỆM VÀ THỂ TÍCH KHỐI ĐA DIỆN. + Dạng 1. Khối chóp có cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. + Dạng 4. Khối chóp có hình chiếu lên mặt phẳng đáy. + Dạng 5. Một số dạng khác. + Dạng 6. Thể tích lăng trụ đứng, lăng trụ đều. + Dạng 7. Thể tích lăng trụ xiên. + Dạng 8. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG II. MẶT NÓN, MẶT TRỤ VÀ KHỐI TRỤ. BÀI 1. MẶT NÓN – HÌNH NÓN – KHỐI NÓN. + Dạng 1. Bài tập cơ bản. + Dạng 2. Bài tập dành cho học sinh 8+, 9+. BÀI 2. MẶT TRỤ – HÌNH TRỤ – KHỐI TRỤ. + Dạng 1. Bài tập cơ bản. + Dạng 2. Bài tập dành cho học sinh 8+, 9+. BÀI 3. MẶT CẦU – KHỐI CẦU. + Dạng 1. Bài tập cơ bản. + Dạng 2. Bài tập dành cho học sinh 8+, 9+. CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. BÀI 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN. + Dạng 1. Các dạng toán mở đầu về hệ tọa độ oxyz. DẠNG 2. CÁC BÀI TOÁN CƠ BẢN VỀ PHƯƠNG TRÌNH MẶT CẦU. + Dạng 3. Bài tập dành cho học sinh 8+, 9+. BÀI 2. MẶT PHẲNG TRONG KHÔNG GIAN. + Dạng 1. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một vectơ pháp tuyến. + Dạng 2. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một cặp vectơ chỉ phương. + Dạng 3. Lập phương trình mặt phẳng liên quan đến khoảng cách. + Dạng 4. Viết phương trình mặt phẳng liên quan đến mặt cầu. + Dạng 5. Bài tập dành cho học sinh 8+, 9+. BÀI 3. ĐƯỜNG THẲNG TRONG KHÔNG GIAN. + Dạng 1. Viết phương trình đường thẳng khi tìm được một vectơ chỉ phương và điểm thuộc đường thẳng. + Dạng 2. Viết phương trình đường thẳng bằng phương pháp tham số hóa. + Dạng 3. Vị trí tương đối giữa hai đường thẳng. + Dạng 4. Vị trí tương đối giữa đường thẳng và mặt phẳng. + Dạng 5. Vị trí tương đối giữa đường thẳng và mặt cầu. + Dạng 6. Bài tập dành cho học sinh điểm 8+, 9+.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng định lý Viète trong các bài toán số học
Tài liệu gồm 38 trang được sưu tầm và tổng hợp bởi các tác giả Doãn Quang Tiến và Nguyễn Minh Tuấn, giới thiệu cho bạn đọc một số các bài toán số học có sử dụng định lý Viète (Vi-ét) và nâng cao hơn nữa là phương pháp bước nhảy Viète (Vieta Jumping) để giải quyết các bài toán số học hay và khó. Tài liệu phù hợp với học sinh ôn thi học sinh giỏi môn Toán, hướng đến kỳ thi VMO. Khái quát nội dung tài liệu ứng dụng định lý Viète trong các bài toán số học: 1 Nhà toán học Francois Viète 2 Định lý Viète Định lý Viète được trình bày trong sách giáo khoa Toán 9 tập 2, cho ta mối quan hệ giữa các nghiệm của phương trình bậc hai và các hệ số của nó. 3 Các bài toán cơ bản Tìm hiểu một vài ví dụ trước khi đi tìm hiểu về phương pháp bước nhảy Viète. [ads] 4 Phương pháp bước nhảy Viète (Vieta Jumping) Đây là một phương pháp mạnh để xử lý lớp phương trình Diophantine bậc hai trở lên. Phương pháp: Ta tiến hành qua 2 bước sau: + Bước 1. Cố định một giá trị nguyên mà đề bài cho, rồi giả sử tồn tại một cặp nghiệm thỏa mãn một vài điều kiện mà không làm mất tính tổng quát của bài toán. + Bước 2. Dựa vào định lý Viète để tìm các mối quan hệ và sự mâu thuẫn, từ đó tìm được kết luận của bài toán. Một trong các bài toán nổi tiếng nhất để minh họa cho phương pháp này và luôn xuất hiện trong bất kì các tài liệu nói về vấn đề này, mà mỗi khi nhắc tới học sinh chuyên toán không thể không biết đó chính là bài toán trong kì thi IMO 1988.
Cực trị hình học - Nguyễn Thúy Hằng
Tài liệu gồm 75 trang được biên soạn bởi tác giả Nguyễn Thị Thúy Hằng, hệ thống lại các phương pháp giải toán cực trị hình học bằng các công cụ toán học đã có, giúp học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi môn Toán bậc THCS và THPT. Mục lục tài liệu cực trị hình học – Nguyễn Thúy Hằng: 1. Giải toán cực trị hình học bằng hình học thuần túy a. Các tính chất, định lý về so sánh các đại lượng hình học. + Bất đẳng thức tam giác. + So sánh đường xiên – hình chiếu và ngược lại. + Quan hệ đường kính và dây của đường tròn. + Liên hệ giữa dây và khoảng cách từ tâm đến dây. + Quan hệ giữa diện tích và chu vi của một hình. b. Các ví dụ. + Ví dụ sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu. + Ví dụ sử dụng mối quan hệ giữa đoạn thẳng và đường gấp khúc. + Ví dụ áp dụng bất đẳng thức trong đường tròn. + Ví dụ ứng dụng diện tích tìm cực trị. c. Các tính chất, định lý về so sánh các đại lượng hình học trong không gian. + Các tính chất, định lý. + Ví dụ. d. Phương pháp biến hình. + Hệ thống các phép biến hình phẳng và không gian. + Nội dung phương pháp. + Áp dụng các phép biến hình trong mặt phẳng. [ads] 2. Giải toán cực trị hình học bằng công cụ đại số a. Bất đẳng thức đại số. + Định nghĩa bất đẳng thức trong đại số. + Các bất đẳng thức cơ bản hay dùng. + Nội dung của phương pháp. + Các ví dụ (hình học phẳng và hình học không gian). b. Giá trị lớn nhất, nhỏ nhất của hàm số. + Hàm số và các giá trị cực trị của hàm số. + Nội dung của phương pháp. + Các ví dụ (hình học phẳng và hình học không gian). 3. Giải toán cực trị hình học bằng các phương pháp khác a. Phương pháp đường mức. + Khái niệm đường mức. + Nguyên lý tiếp xúc đường mức. + Một số dạng đường mức cơ bản. + Nội dung của phương pháp. + Ví dụ áp dụng. b. Kết hợp các phương pháp 61 + Kết hợp phương pháp hình học thuần túy và phương pháp tọa độ. + Giải bài toán cực trị kết hợp phương pháp hình học thuần túy và phương pháp đại số. + Giải bài toán cực trị kết hợp giữa phép đối xứng trục và phương pháp tọa độ.
Chuyên đề đa thức và số học
Tài liệu chuyên đề đa thức và số học gồm 102 trang được biên soạn bởi các tác giả: Doãn Quang Tiến, Huỳnh Kim Linh, Tôn Ngọc Minh Quân, Nguyễn Minh Tuấn, bổ trợ cho học sinh trong quá trình ôn thi học sinh giỏi môn Toán. Chủ đề số học và đa thức là những chủ đề thường xuyên xuất hiện trong các đề thi học sinh giỏi môn Toán các cấp, với các bài toán khó và rất khó. Đa thức là mảng mà chứa đựng trong nó các yếu tố về đại số, giải tích, hình học và các tính chất về số học, chính vì thế ta có thể xem đa thức có thể xem như là các bài toán tổ hợp giữa các mảng khác của Toán học cũng như đóng vai trò liên kết các mảng đó lại với nhau thành một thể thống nhất. Số học từ lâu luôn được mệnh danh là “bà chúa của Toán học”, đã có rất nhiều tính chất hay, quy luật đẹp và bất ngờ của số học được phát hiện, điều thú vị là nhiều mệnh đề khó nhất của số học được phát biểu rất đơn giản, ai cũng hiểu được, nhiều bài toán khó nhưng có thể giải rất sáng tạo với những kiến thức số học phổ thông đơn giản. Chính vì thế sự kết hợp của hai mảng kiến thức này sẽ mang tới cho chúng ta những bài toán đẹp. Trong chủ đề của bài viết này, chúng ta sẽ đi khám phá và chinh phục phần nào vẻ đẹp của sự kết hợp đó. [ads] Khái quát nội dung tài liệu chuyên đề đa thức và số học: PHẦN 1 . CÁC KIẾN THỨC CƠ BẢN 1. Đa thức. 2. Một số tính chất cần nắm. 3. Những định lý quan trọng: Định lý Bézout, Định lý Schur, Định lý Dirichlet về số nguyên tố, Định lý về dãy tuần hoàn, Bổ đề Hensel, Công thức nội suy Lagrange. PHẦN 2 . BÀI TẬP VÀ HƯỚNG DẪN GIẢI: Tuyển chọn 100 bài toán thuộc chuyên đề đa thức và số học có lời giải chi tiết.
Phương trình hàm trên tập rời rạc
Những bài toán về chủ đề phương trình hàm hiện nay đã trở nên khá phổ biến đối với các bạn học sinh yêu thích môn Toán, vì chúng đã xuất hiện thường xuyên hơn trong các đề thi học sinh giỏi môn Toán các cấp cũng như kì thi chọn đội tuyển HSG Toán cấp quốc gia, VMO hay các kì thi khu vực và quốc tế. Đặc biệt, trong các lớp dạng phương trình hàm, thì dạng phương trình hàm trên các tập rời rạc là một mảng được ít các học sinh chú ý tới bởi độ khó và chưa được tiếp xúc nhiều đồng thời ngoài việc sử dụng các kĩ thuật xử lý phương trình hàm cơ bản chúng ta còn phải sử dụng các tính chất số học rất đặc sắc của tập rời rạc như là: tính chia hết, tính chất của số nguyên tố, của số chính phương … Trong tài liệu này, nhóm tác giả Chinh Phục Olympic Toán: Nguyễn Minh Tuấn, Doãn Quang Tiến, Tôn Ngọc Minh Quân sẽ mang tới cho bạn đọc tuyển tập các bài toán phương trình hàm trên tập rời rạc và một số bài toán phương trình hàm khác hay và khó, với những lời giải vô cùng đặc sắc, nhằm giúp bạn đọc có thể có nhiều cách nhìn khác về mảng toán này đồng thời cũng như chuẩn bị cho các kì học sinh giỏi Toán, kỳ thi Olympic. [ads] Để giải quyết các bài toán phương trình hàm trên tập rời rạc mà có thể giải bằng các tính chất số học thì nên lưu ý đến một số dấu hiệu sau: + Nếu xuất hiện các biểu thức tuyến tính chứa lũy thừa, có thể nghĩ đến các bài toán liên quan đến cấp của phần tử, các phương trình đặc biệt như phương trình Pell hay phương trình Pythagore … hay đưa về việc xử lý các phương trình vô định nghiệm nguyên. + Nếu hàm số đã cho là hàm nhân tính, ta thường hay xét đến giá trị hàm số tại các điểm là số nguyên tố hoặc dãy vô hạn các số nguyên tố. + Sử dụng các đẳng thức và bất đẳng thức số học. + Và đặc biệt nhất, trong một số bài toán, hệ cơ số đếm có thể dùng để xây dựng nhiều dãy số có tính chất số học thú vị. Trong hệ cơ số 10 chúng ta có thể rất khó nhận ra quy luật của dãy, nhưng nếu chọn được hệ cơ số phù hợp thì bài toán có thể giải quyết đơn giản hơn rất nhiều. Trong tài liệu này, nhóm tác giả sẽ đề cập đến các bài toán phương trình hàm mà sử dụng các tính chất cũng như các phương pháp trong số học để giải, nhằm giúp bạn đọc hiểu rõ hơn và có một cái nhìn mới mẻ hơn về các phương pháp khác để giải phương trình hàm, bên cạnh đó nhóm tác giả cũng sẽ giới thiệu cho bạn đọc các bài toán phương trình hàm và khó.