Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Bùi Đình Thông

Tài liệu gồm 149 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tóm tắt lý thuyết, phân dạng và tuyển chọn bài tập chuyên đề nguyên hàm, tích phân và ứng dụng, hỗ trợ học sinh khối 12 trong quá trình học chương trình Giải tích 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. BÀI 1 : NGUYÊN HÀM. Chuyên đề 1 : NGUYÊN HÀM CƠ BẢN – NGUYÊN HÀM MỞ RỘNG – VI PHÂN. ➢ Dạng 1: Các bài toán sử dụng định nghĩa, tính chất nguyên hàm và bảng nguyên hàm sơ cấp. + Bài toán 1: Tìm nguyên hàm của hàm số bằng bảng nguyên hàm. + Bài toán 2: Chứng minh F(x) là một nguyên hàm của f(x). + Bài toán 3: Xác định nguyên hàm với điều kiện ràng buộc. + Bài toán 4: Tìm giá trị của tham số để F(x) là một nguyên hàm của f(x). ➢ Dạng 2: Tìm nguyên hàm bằng công thức mở rộng. + Bài toán 1: Tìm nguyên hàm của hàm đa thức. + Bài toán 2: Tìm nguyên hàm của hàm phân thức. + Bài toán 3: Tìm nguyên hàm của hàm mũ. + Bài toán 4: Tìm nguyên hàm của hàm lượng giác. Chuyên đề 2 : CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM. ➢ Dạng 1: Tìm nguyên hàm bằng phương pháp đổi biến số. ➢ Dạng 2: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. BÀI 2 : TÍCH PHÂN. Chuyên đề 1 : TÍCH PHÂN CƠ BẢN. ➢ Dạng 1: Sử dụng công thức nguyên hàm cơ bản, nguyên hàm mở rộng và phương pháp vi phân. ➢ Dạng 2: Tích phân hàm phân thức đại số đặc biệt. Chuyên đề 2 : TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ. ➢ Dạng 1: Phương pháp đổi biến số dạng 1. ➢ Dạng 2: Phương pháp đổi biến số dạng 2. ➢ Dạng 3: Phương pháp đổi biến số dạng 3. Chuyên đề 3 : TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TỪNG PHẦN. ➢ Dạng 1: P(x) là hàm đa thức, Q(x) không phải là hàm logarit. ➢ Dạng 2: P(x) là hàm logarit, Q(x) là hàm bất kì. Chuyên đề 4 : TÍNH TÍCH PHÂN HÀM ẨN. ➢ Dạng 1: Tích phân sử dụng phương pháp đổi biến số. ➢ Dạng 2: Tích phân sử dụng phương pháp tích phân từng phần. ➢ Dạng 3: Tích phân sử dụng tính chẵn lẻ. ➢ Dạng 4. Tích phân chứa biểu thức dạng f'(x) + p(x).f(x) = h(x). BÀI 3 : ỨNG DỤNG TÍCH PHÂN. Chuyên đề 1 : TÍNH DIỆN TÍCH HÌNH PHẲNG. ➢ Dạng 1: Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục Ox (y = 0) và các đường thẳng x = a, x = b. ➢ Dạng 2: Diện tích hình phẳng (H) giới hạn bởi các đồ thị hàm số y = f(x), y = g(x) và các đường thẳng x = a, x = b. Chuyên đề 2 : TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY. ➢ Dạng 1: Thể tích của vật thể: Một vật thể V được giới hạn bởi hai mặt phẳng vuông góc với trục hoành tại hai điểm có hoành độ x = a, x = b (a =< b). Gọi S(x) là diện tích thiết diện của V, vuông góc với trục Ox tại x thuộc [a;b]. ➢ Dạng 2: Thể tích khối tròn xoay: Cho hình phẳng giới hạn bởi đồ thị của f(x) liên tục trên đoạn [a;b], trục Ox và hai đường thẳng x = a, x = b quay quanh Ox, ta được khối tròn xoay. ➢ Dạng 3: Thể tích khối tròn xoay: Cho hình phẳng giới hạn bởi đồ thị của f(x), g(x) liên tục trên đoạn [a;b] và hai đường thẳng x = a, x = b quay quanh Ox, ta được khối tròn xoay (V). Chuyên đề 3 : BÀI TOÁN THỰC TẾ – ĐỒ THỊ ĐẶC BIỆT. ➢ Dạng 1: Bài toán chuyển động. ➢ Dạng 2: Bài toán liên quan đến các yếu tố vật lý.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018
Tài liệu gồm 414 trang tổng hợp các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo 4 mức độ nhận thức, được phân tích và giải chi tiết. Trích dẫn tài liệu trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018 : + (THPT Quỳnh Lưu 1 – Nghệ An – Lần 2 năm 2017 – 2018) Thể tích V của khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đường tròn (C): x^2 + (y – 3)^2 = 1 xung quanh trục hoành là? + (THPT Chuyên Hạ Long – Quảng Ninh lần 2 năm 2017 – 2018) Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số f1(x) và f2(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a, x = b (tham khảo hình vẽ dưới). Công thức tính diện tích của hình (H) là? [ads] + (THPT Mộ Đức-Quảng Ngãi – lần 1 năm 2017 – 2018) Trong hệ trục tọa độ Oxy, cho parabol (P): y = x^2 và hai đường thẳng y = a, y = b (0 < a < b) (hình vẽ). Gọi S1 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = a (phần tô đen); S2 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì S1 = S2?
Hướng dẫn giải tích phân vận dụng cao trong đề thi THPTQG 2018
Tài liệu gồm 43 tuyển tập 120 câu trắc nghiệm tích phân vận dụng cao có lời giải chi tiết được trích từ các đề thi thử môn Toán năm 2018. Các bài toán được chia thành 13 vấn đề: + Vấn đề 1. Tính tích phân theo định nghĩa + Vấn đề 2. Kỹ thuật đổi biến + Vấn đề 3. Kỹ thuật tích phân từng phần + Vấn đề 4. Tính a, b, c trong tích phân + Vấn đề 5. Tính tích phân hàm phân nhánh + Vấn đề 6. Tính tích phân dựa vào tính chất + Vấn đề 7. Kỹ thuật phương trình hàm + Vấn đề 8. Kỹ thuật biến đổi + Vấn đề 9. Kỹ thuật đạo hàm đúng + Vấn đề 10. Kỹ thuật đưa về bình phương loại 1 + Vấn đề 11. Kỹ thuật đưa về bình phương loại 2 – Kỹ thuật Holder + Vấn đề 12. Kỹ thuật đánh giá AM – GM + Vấn đề 13. Tìm GTLN-GTNN của tích phân
Tuyển tập câu hỏi trắc nghiệm nguyên hàm - tích phân dùng Casio
Tài liệu gồm 62 trang hướng dẫn giải nhanh các bài toán trắc nghiệm nguyên hàm – tích phân bằng máy tính Casio, tài liệu do các thầy, cô giáo trong nhóm nhóm Casio – Latex biên tập. 1. Nguyên hàm các hàm hữu tỉ – Thầy Lê Anh Dũng a. Phương pháp bấm máy b. Các ví dụ 2. Nguyên hàm các hàm hữu tỉ – Thầy Dương Bùi Đức a. Cơ sở lí thuyết giải nguyên hàm hữu tỷ b. Thực hiện phép chia đa thức – Sử dụng máy tính Vinacal 570 es plus II 3. Nguyên hàm dạng tìm hệ số C – Thầy Phan Minh Tâm 4. Nguyên hàm dạng cho f(x) và F(a). Tính F(b) [ads] 5. Tích phân dạng đặc biệt – Thầy Huỳnh Văn Quy 6. Tích phân hàm hữu tỉ – Thầy Triệu Minh Hà 7. Tích phân của hàm lượng giác – Thầy Nguyễn Hữu Nhanh Tiến 8. Đổi biến chứa e^x – Thầy Nguyễn Vân Trường 9. Tích Phân Casio liên quan đến lnx – Thầy Nguyễn Tài Tuệ 10. Tích phân từng phần – Thầy Trần Hiếu
1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.