Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Hình học không gian - Lưu Huy Thưởng

Tài liệu gồm 55 trang trình bày lý thuyết, phân dạng, phương pháp giải toán và các bài tập chuyên đề hình học không gian. KIẾN THỨC CƠ BẢN 1. Xác định một mặt phẳng + Ba điểm không thẳng hàng thuộc mặt phẳng. + Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. + Hai đường thẳng cắt nhau thuộc mặt phẳng. 2. Một số qui tắc vẽ hình biểu diễn của hình không gian + Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. + Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. + Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. + Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt. CÁC DẠNG TOÁN THƯỜNG GẶP §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Dạng toán 1. Tìm giao tuyến của hai mặt phẳng. Dạng toán 2. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng toán 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui. Dạng toán 4. Xác định thiết diện của một hình chóp với một mặt phẳng (đi qua 3 điểm). [ads] §2. HAI ĐƯỜNG THẲNG SONG SONG Dạng toán 1. Chứng minh hai đường thẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh đường thẳng song song với mặt phẳng. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §4. HAI MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh hai mặt phẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §5. HAI ĐƯỜNG THẲNG VUÔNG GÓC §6. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG Dạng toán 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Chứng minh hai đường thẳng vuông góc. Dạng toán 2. Tìm thiết diện qua một điểm và vuông góc với một đường thẳng. Dạng toán 3. Góc giữa đường thẳng và mặt phẳng. §7. HAI MẶT PHẲNG VUÔNG GÓC Dạng toán 1. Góc giữa hai mặt phẳng. Dạng toán 2. Chứng minh hai mặt phẳng vuông góc. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng toán 3. Tính diện tích hình chiếu của đa giác. §8. KHOẢNG CÁCH Dạng toán 1. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng. Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. §9. THỂ TÍCH KHỐI ĐA DIỆN Dạng toán 1. Khối chóp có cạnh bên vuông góc với đáy. Dạng toán 2. Khối chóp có mặt bên vuông góc với đáy. Dạng toán 3. Khối chóp đều. Dạng toán 4. Phương pháp tỷ số thể tích. §10. THỂ TÍCH KHỐI LĂNG TRỤ Dạng toán 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy. Dạng toán 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng toán 3. Lăng trụ đứng có góc giữa hai mặt phẳng. Dạng toán 4. Khối lăng trụ xiên. TUYỂN TẬP ĐỀ THI ĐẠI HỌC CÁC NĂM

Nguồn: toanmath.com

Đọc Sách

Hình không gian thể tích từ cơ bản đến nâng cao - Nguyễn Tiến Đạt
Tài liệu gồm 42 trang tóm tắt lý thuyết, công thức tính và hướng dẫn giải các dạng toán về thể tích của khối đa diện. Tài liệu phù hợp để các học sinh bị “mất gốc” ôn lại kỹ năng giải toán hình học không gian. Nội dung tài liệu gồm: ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9 – 10 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG §2. HAI MẶT PHẲNG SONG SONG B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG §2. HAI MẶT PHẲNG VUÔNG GÓC §3. KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song 3. Khoảng cách giữa hai mặt phẳng song song 4. Khoảng cách giữa hai đường thẳng chéo nhau [ads] §4.GÓC 1. Góc giữa hai đường thẳng a và b 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) 3. Góc giữa hai mặt phẳng 4. Diện tích hình chiếu ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. CÁC CÔNG THỨC THỂ TÍCH CỦA KHỐI ĐA DIỆN 1. Thể tích khối lăng trụ: 2. Thể tích khối chóp: 3. Tỉ số thể tích tứ diện: B. PHÂN DẠNG BÀI TẬP LOẠI 1: THỂ TÍCH LĂNG TRỤ 1. Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy 2. Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng 3. Dạng 3: Lăng trụ đứng có góc giữa hai mặt phẳng 4. Dạng 4: Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Một số hình chóp đặc biệt: + Hình chóp tam giác đều + Hình chóp tứ giác đều + Hình chóp có một cạnh bên vuông góc với đáy 1. Dạng 1: Khối chóp có cạnh bên vuông góc với đáy 2. Dạng 2: Khối chóp có một mặt bên vuông góc với đáy 3. Dạng 3: Khối chóp đều 4. Dạng 4: Khối chóp và phương pháp tỉ số thể tích
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)
Tài liệu gồm 60 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình lăng trụ. Nội dung tài liệu gồm: Lý thuyết cơ bản và các công thức tính a. Hình lăng trụ đứng Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với đáy. Các mặt bên của hình lăng trụ đứng là hình chữ nhật và vuông góc với mặt đáy. b. Hình lăng trụ đều: Hình lăng tru đều là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của hình lăng trụ đều là những hình chữ nhật bằng nhau và vuông góc với mặt đáy. [ads] c. Hình hộp đứng: Hình hộp đứng là hình lăng trụ đứng có đáy là hình bình hành. Trong hình hộp đứng 4 mặt bên đều là hình chữ nhật. d. Hình hộp chữ nhật Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật. Tất cả 6 mặt của hình hộp chữ nhật đều là hình chữ nhật. Ví dụ và bài tập trắc nghiệm Bài tập trích từ các đề thi có giải Một số bài TEST thể tích chóp – lăng trụ sưu tầm
Chuyên đề khối đa diện - Trần Quốc Nghĩa
Tài liệu gồm 78 trang bao gồm lý thuyết cần nắm, hướng dẫn giải các dạng toán và bài tập trắc nghiệm có đáp án chuyên đề khối đa diện. – Vấn đề 1. Kiến thức cần nhớ – Vấn đề 2. Khối đa diện – Vấn đề 3. Đa diện lồi, đa diện đều – Vấn đề 4. Thể tích khối đa diện + Hình 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy + Hình 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy + Hình 3. Hình chóp tứ giác đều S.ABCD + Hình 4. Hình chóp S.ABC, có sa vuông góc với đáy (ABC) [ads] + Hình 6a. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) H6a.1 – Góc giữa cạnh bên và mặt đáy H6a.2 – Góc giữa mặt bên và mặt đáy + Hình 6b. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông H6b.1 – Góc giữa cạnh bên và mặt đáy H6b.2 – Góc giữa mặt bên và mặt đáy + Hình 7. Hình lăng trụ Bài tập tổng hợp Đáp án và giải trắc nghiệm
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 77 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình chóp. Nội dung gồm: + Tóm tắt lý thuyết cơ bản + Phân dạng bài tập theo dạng hình + Bài tập minh họa có lời giải chi tiết + Bài tập trắc nghiệm tự luyện [ads] Bạn đọc có thể xem tiếp tập 2 tại đây: Phân loại dạng và phương pháp giải nhanh hình không gian – Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)