Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Hình học không gian - Lưu Huy Thưởng

Tài liệu gồm 55 trang trình bày lý thuyết, phân dạng, phương pháp giải toán và các bài tập chuyên đề hình học không gian. KIẾN THỨC CƠ BẢN 1. Xác định một mặt phẳng + Ba điểm không thẳng hàng thuộc mặt phẳng. + Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. + Hai đường thẳng cắt nhau thuộc mặt phẳng. 2. Một số qui tắc vẽ hình biểu diễn của hình không gian + Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. + Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. + Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. + Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt. CÁC DẠNG TOÁN THƯỜNG GẶP §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Dạng toán 1. Tìm giao tuyến của hai mặt phẳng. Dạng toán 2. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng toán 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui. Dạng toán 4. Xác định thiết diện của một hình chóp với một mặt phẳng (đi qua 3 điểm). [ads] §2. HAI ĐƯỜNG THẲNG SONG SONG Dạng toán 1. Chứng minh hai đường thẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh đường thẳng song song với mặt phẳng. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §4. HAI MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh hai mặt phẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §5. HAI ĐƯỜNG THẲNG VUÔNG GÓC §6. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG Dạng toán 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Chứng minh hai đường thẳng vuông góc. Dạng toán 2. Tìm thiết diện qua một điểm và vuông góc với một đường thẳng. Dạng toán 3. Góc giữa đường thẳng và mặt phẳng. §7. HAI MẶT PHẲNG VUÔNG GÓC Dạng toán 1. Góc giữa hai mặt phẳng. Dạng toán 2. Chứng minh hai mặt phẳng vuông góc. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng toán 3. Tính diện tích hình chiếu của đa giác. §8. KHOẢNG CÁCH Dạng toán 1. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng. Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. §9. THỂ TÍCH KHỐI ĐA DIỆN Dạng toán 1. Khối chóp có cạnh bên vuông góc với đáy. Dạng toán 2. Khối chóp có mặt bên vuông góc với đáy. Dạng toán 3. Khối chóp đều. Dạng toán 4. Phương pháp tỷ số thể tích. §10. THỂ TÍCH KHỐI LĂNG TRỤ Dạng toán 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy. Dạng toán 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng toán 3. Lăng trụ đứng có góc giữa hai mặt phẳng. Dạng toán 4. Khối lăng trụ xiên. TUYỂN TẬP ĐỀ THI ĐẠI HỌC CÁC NĂM

Nguồn: toanmath.com

Đọc Sách

Toàn tập thể tích khối đa diện vận dụng cao
Tài liệu gồm 92 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện vận dụng cao (VDC) lớp 12 THPT. Vận dụng cao thể tích khối đa diện đặc biệt – (phần 1). Vận dụng cao thể tích khối đa diện đặc biệt – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 1). Vận dụng cao bài toán thể tích khối đa diện – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 1). Vận dụng cao cực trị thể tích khối đa diện – (phần 2). Vận dụng cao cực trị thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 4). Vận dụng cao cực trị thể tích khối đa diện – (phần 5). Vận dụng cao cực trị thể tích khối đa diện – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 1). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 2). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 3). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 4). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 5). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 7). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 8). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 9). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 10). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 4). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 5). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 4). Vận dụng cao tỉ số thể tích khối hộp – (phần 1). Vận dụng cao tỉ số thể tích khối hộp – (phần 2). Vận dụng cao tỉ số thể tích khối hộp – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 1). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 2). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 4). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 1). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 2). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 3). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 4). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 6). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 7). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 8). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 9). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 10). Xem thêm : Toàn tập thể tích khối đa diện cơ bản
Chuyên đề hình học không gian Toán 12 - Lê Quang Xe
Tài liệu gồm 411 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tóm tắt lý thuyết, ví dụ minh họa và bài tập rèn luyện chuyên đề hình học không gian trong chương trình môn Toán 12. CHƯƠNG 1 . ĐA DIỆN 1. §1 – THỂ TÍCH KHỐI ĐA DIỆN 1. A Tóm tắt lý thuyết 1. B Ví dụ minh họa 4. C Bài tập rèn luyện 12. + Dạng 1.Mở đầu khối đa diện 12. + Dạng 2.Thể tích khối lăng trụ đứng 22. + Dạng 3.Thể tích khối chóp có cạnh bên vuông góc với đáy 55. + Dạng 4.Thể tích khối chóp có mặt bên vuông góc với đáy 89. + Dạng 5.Thể tích khối chóp đều 121. + Dạng 6.Thể tích khối tứ diện đặc biệt 151. + Dạng 7.Tỉ số thể tích 197. + Dạng 8.Các bài toán thể tích chọn lọc 244. + Dạng 9.Bài toán góc – khoảng cách 284. + Dạng 10.Cực trị khối đa diện 325. CHƯƠNG 2 . KHỐI TRÒN XOAY 344. §1 – MẶT NÓN, MẶT TRỤ & MẶT CẦU 344. A Tóm tắt lý thuyết 344. B Ví dụ 346. C Bài tập rèn luyện 348. + Dạng 1.Các yếu tố liên quan đến khối nón, Khối trụ 348. + Dạng 2.Khối tròn xoay nội, ngoại tiếp đa diện 370. + Dạng 3.Cực trị và toán thực tế về khối tròn xoay 381.
Toàn tập thể tích khối đa diện cơ bản
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện cơ bản lớp 12 THPT. Cơ bản thể tích khối chóp (phần 1). Cơ bản thể tích khối chóp (phần 2). Cơ bản thể tích khối chóp (phần 3). Cơ bản thể tích khối chóp (phần 4). Cơ bản thể tích khối chóp (phần 5). Cơ bản thể tích khối chóp (phần 6). Cơ bản thể tích khối chóp (phần 7). Cơ bản thể tích khối chóp (phần 8). Cơ bản thể tích khối chóp (phần 9). Cơ bản thể tích khối lăng trụ (phần 1). Cơ bản thể tích khối lăng trụ (phần 2). Cơ bản thể tích khối lăng trụ (phần 3). Cơ bản thể tích khối lăng trụ (phần 4). Cơ bản thể tích khối lăng trụ (phần 5). Cơ bản thể tích khối lăng trụ (phần 6). Cơ bản thể tích khối lăng trụ (phần 7). Cơ bản thể tích khối lăng trụ (phần 8).
Một số bài toán cực trị hình học trong không gian
Tài liệu gồm 53 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn một số bài toán cực trị hình học trong không gian có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Hình học chương 1: Khối đa diện và thể tích của chúng. Trích dẫn tài liệu một số bài toán cực trị hình học trong không gian: +  Một khối gỗ hình hộp chữ nhật có kích thước thoả mãn: Tổng của chiều dài và chiều rộng bằng 12 cm; tổng của chiều rộng và chiều cao là 24 cm. Hỏi thể tích lớn nhất mà khối hộp có thể đạt được là bao nhiêu? + Trong không gian cho bốn mặt cầu có bán kính lần lượt là 2; 3; 3; 2 đôi một tiếp xúc nhau. Mặt cầu nhỏ tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng? + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 0 45 góc giữa SB và mặt đáy bằng 0 0 90. Xác định để thể tích khối chóp S ABC đạt giá trị lớn nhất. + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 45o góc giữa SB và mặt đáy bằng 0 90 o o. Xác định để thể tích khối chóp S ABC lớn nhất. + Cho hình chóp S ABCD có đáy ABCD là hình thang cân đáy AB nội tiếp đường tròn tâm O bán kính R. Biết rằng AC BD tại I đồng thời I là hình chiếu của S lên ABCD và SAC vuông tại S. Thể tích lớn nhất của khối chóp S ABCD theo R là?