Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Lương Thế Vinh - Hà Nội

Hôm nay, trường THCS – THPT Lương Thế Vinh – Hà Nội tiếp tục tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần thứ 2. Còn khoảng 4 tháng nữa kỳ thi chính thức THPT Quốc gia 2019 môn Toán sẽ diễn ra, do đó những kỳ thi thử Toán như thế này là hết sức cần thiết, nhằm kiểm tra và đánh dấu những bước ôn tập, chuẩn bị của các em học sinh khối 12. Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Lương Thế Vinh – Hà Nội có mã đề 110, đề được biên soạn dựa trên mẫu đề tham khảo THPTQG 2019 môn Toán mà Bộ Giáo dục và Đào tạo từng công bố, đề thi thử Toán có đáp án. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Lương Thế Vinh – Hà Nội : + Hai người A và B ở cách nhau 180 (m) trên một đoạn đường thẳng và cùng chuyển động thẳng theo một hướng với vận tốc biến thiên theo thời gian, A chuyển động với vận tốc v1(t) = 6t + 5 (m/s), B chuyển động với vận tốc v2(t) = 2at − 3 (m/s) (a là hằng số), trong đó t (giây) là khoảng thời gian tính từ lúc A, B bắt đầu chuyển động. Biết rằng lúc đầu A đuổi theo B và sau 10 (giây) thì đuổi kịp. Hỏi sau 20 (giây), A cách B bao nhiêu mét? + Một hình hộp chữ nhật có chiều cao là 90cm, đáy hộp là hình chữ nhật có chiều rộng là 50cm và chiều dài là 80cm. Trong khối hộp có chứa nước, mực nước so với đáy hộp có chiều cao là 40cm. Hỏi khi đặt vào khối hộp một khối trụ có chiều cao bằng chiều cao khối hộp và bán kính đáy là 20cm theo phương thẳng đứng thì chiều cao của mực nước so với đáy là bao nhiêu? + Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là AB = 8m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M, N nằm trên Parbol và hai đỉnh P, Q nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho 1m2 cần số tiền mua hoa là 200.000 đồng cho 1m2. Biết MN = 4m, MQ = 6m. Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát thi TN THPT 2020 môn Toán trường Nguyễn Tất Thành - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát thi TN THPT 2020 môn Toán trường THCS & THPT Nguyễn Tất Thành – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát thi TN THPT 2020 môn Toán trường Nguyễn Tất Thành – Hà Nội : + Trong không gian Oxyz cho ba điểm A(1;1;-1), B(2;0;3), C(3;2;1) và điểm G là trọng tâm tam giác ABC. Mặt phẳng (P) đi qua điểm G (không đi qua O) cắt các tia OA, OB, OC lần lượt tại A’, B’, C’. Khối tứ diện OA’B’C’ có thể tích nhỏ nhất bằng? + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 8,4 % / năm theo hình thức lãi kép (tức là sau mỗi năm, số tiền lãi của năm trước sẽ được nhập vào vốn để tính lãi cho năm tiếp theo). Hỏi người đó phải gửi ít nhất bao nhiêu năm để khi rút tiền khỏi ngân hàng người đó lĩnh được số tiền (cả vốn lẫn lãi) lớn hơn hoặc bằng 100 triệu đồng? [ads] + Trong mặt phẳng Oxy, gọi A, B, C lần lượt là các điểm biểu diễn các số phức z1 = i, z2 = 1 + 3i, z3 = a + ai (a thuộc R). Biết rằng có hai giá trị thực của a là a1 và a2 để tam giác ABC có diện tích bằng 5. Tính giá trị của biểu thức P = a1a2.
Đề khảo sát chất lượng Toán 12 năm 2019 - 2020 trường Nguyễn Trãi - Đà Nẵng
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 12 năm học 2019 – 2020 trường THPT Nguyễn Trãi – Đà Nẵng; đề thi có mã đề 170 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, kỳ thi nhằm ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 – 2020 trường Nguyễn Trãi – Đà Nẵng : + Bạn A muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 (cm). Bạn muốn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M và N thuộc cạnh BC; P và Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Thể tích lớn nhất của chiếc thùng mà bạn A có thể làm được là? + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng? [ads] + Cho biết rằng sự tỉ lệ tăng dân số thế giới hàng năm là 1,32%, nếu tỉ lệ tăng dân số không thay đổi thì dân số sau N năm được tính theo công thức tăng trưởng liên tục S = Ae^Nr trong đó A là dân số tại thời điểm mốc, S là số dân sau N năm, r là tỉ lệ tăng dân số hàng năm. Năm 2013 dân số thế giới vào khoảng 7095 triệu người. Biết năm 2020 dân số thế giới gần nhất với giá trị nào sau đây? A. 7782 triệu người. B. 7680 triệu người. C. 7879 triệu người. D. 7777 triệu người.
Đề giao lưu kiến thức Toán năm 2019 - 2020 lần 2 trường Quảng Xương 1 - Thanh Hóa
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán, Chủ Nhật ngày 21 tháng 06 năm 2020, trường THPT Quảng Xương 1, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu kiến thức môn Toán lần thứ hai năm học 2019 – 2020 với một số trường THPT tại tỉnh Thanh Hóa. Đề giao lưu kiến thức Toán năm 2019 – 2020 lần 2 trường THPT Quảng Xương 1 – Thanh Hóa được biên soạn bám sát cấu trúc đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu kiến thức Toán năm 2019 – 2020 lần 2 trường Quảng Xương 1 – Thanh Hóa : + Gọi S là tập hợp chứa tất cả các giá trị nguyên của tham số m để có đúng 2 bộ số thực (x;y) thỏa mãn đồng thời hai hệ thức log3^2 (26x + 53). log3 (x^2 + y^2 + 2x + 4y + 5)/729 + 8log3 m = 0 và (x – 12)^2 + (y + 2)^2 = 196. Tổng giá trị các phần tử của tập S bằng? + Ông Hùng gửi 100 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn một năm với công thức C = A(1 + r)^n, lãi suất r = 12% một năm. Trong đó C là số tiền nhận được (cả gốc lẫn lãi) sau thời gian n năm, A là số tiền gửi ban đầu. Tìm n nguyên dương nhỏ nhất để sau n năm ông Hùng nhận được số tiền lãi hơn 40 triệu đồng (giả sử rằng lãi suất hằng năm không thay đổi). [ads] + Một chiếc hộp đựng 8 viên bi màu xanh được đánh số từ 1 đến 8, 9 viên bi màu đỏ được đánh số từ 1 đến 9 và 10 viên bi màu vàng được đánh số từ 1 đến 10. Một người chọn ngẫu nhiên 3 viên bi trong hộp. Tính xác suất để 3 viên bi được chọn có số đôi một khác nhau.
Đề ôn thi THPTQG 2020 môn Toán lần 3 trường THPT Quang Hà - Vĩnh Phúc
Chủ Nhật ngày 07 tháng 06 năm 2020, trường THPT Quang Hà, tỉnh Vĩnh Phúc tổ chức kỳ thi kiểm tra khảo sát ôn thi THPT Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề ôn thi THPTQG 2020 môn Toán lần 3 trường THPT Quang Hà – Vĩnh Phúc mã đề 119 được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Ma trận đề ôn thi THPTQG 2020 môn Toán lần 3 trường THPT Quang Hà – Vĩnh Phúc :Chủ đề / kiến thứcNhận biếtThông hiểuVận dụngVận dụng caoTổngỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốTính đơn điệu10102Cực trị11002GTLN – GTNN10012Tiệm cận10001Đồ thị hàm số12115Mũ và logarit33129Nguyên hàm – Tích phân13105Số phức32005Khối đa diện20013Khối tròn xoay21205Tọa độ trong không gian Oxyz42006Tổ hợp – Xác suất10102Dãy số – Cấp số10001Góc – Khoảng cách00112Tổng số câu22148650Tỉ lệ44%28%16%12%100%