Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 7 - Nguyễn Chín Em

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tự học Toán 7 do thầy Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm 381 trang trình bày đầy đủ lý thuyết SGK, phân dạng toán và hướng dẫn giải các bài toán Đại số và Hình học lớp 7. Khái quát nội dung tài liệu tự học Toán 7 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . SỐ HỮU TỈ. SỐ THỰC. 1 TẬP HỢP R CÁC SỐ HỮU TỈ. + Dạng 1. Biểu diễn số hữu tỉ. + Dạng 2. So sánh hai số hữu tỉ. 2 CỘNG, TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng, trừ số hữu tỉ. + Dạng 2. Mở đầu về phương trình. + Dạng 3. Biểu diễn một số hữu tỉ thành tổng hoặc hiệu của các số hữu tỉ khác. 3 NHÂN, CHIA SỐ HỮU TỈ. 4 GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. 5 LŨY THỪA CỦA MỘT SỐ HỮU TỈ. 6 TỈ LỆ THỨC. 7 SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. LÀM TRÒN SỐ. 8 SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. CHƯƠNG 2 . HÀM SỐ VÀ ĐỒ THỊ. 1 ĐẠI LƯỢNG TỈ LỆ THUẬN. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ thuận để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ thuận. 2 ĐẠI LƯỢNG TỈ LỆ NGHỊCH. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ nghịch để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ nghịch. 3 HÀM SỐ. 4 MẶT PHẲNG TỌA ĐỘ. 5 ĐỒ THỊ HÀM SỐ y = ax VỚI a ≠ 0. CHƯƠNG 3 . THỐNG KÊ. 1 THU THẬP SỐ LIỆU THỐNG KÊ. 2 BẢNG TẦN SỐ CÁC GIÁ TRỊ CỦA DẤU HIỆU. 3 BIỂU ĐỒ. 4 SỐ TRUNG BÌNH CỘNG. CHƯƠNG 4 . BIỂU THỨC ĐẠI SỐ. 1 KHÁI NIỆM VỀ BIỂU THỨC ĐẠI SỐ. 2 GIÁ TRỊ CỦA MỘT BIỂU THỨC ĐẠI SỐ. 3 ĐƠN THỨC. 4 ĐƠN THỨC ĐỒNG DẠNG. 5 ĐA THỨC. + Dạng 1. Nhận biết đa thức. + Dạng 2. Thu gọn đa thức. + Dạng 3. Tìm bậc của đa thức. 6 CỘNG TRỪ ĐA THỨC. + Dạng 1. Tính tổng, hiệu của hai đa thức. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức. + Dạng 3. Bài toán liên quan đến chia hết. 7 ĐA THỨC MỘT BIẾN. 8 CỘNG, TRỪ ĐA THỨC MỘT BIẾN. 9 NGHIỆM CỦA ĐA THỨC MỘT BIẾN. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . ĐƯỜNG THẲNG VUÔNG GÓCĐƯỜNG THẲNG SONG SONG. 1 HAI GÓC ĐỐI ĐỈNH. 2 HAI ĐƯỜNG THẲNG VUÔNG GÓC. 3 CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Góc so le trong. Góc đồng vị. + Tính chất. 4 HAI ĐƯỜNG THẲNG SONG SONG. 5 TỪ VUÔNG GÓC ĐẾN SONG SONG. CHƯƠNG 2 . TAM GIÁC. 1 TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Giải bài toán định lượng. + Bài tập luyện tập. 2 HAI TAM GIÁC BẰNG NHAU. 3 HAI TAM GIÁC BẰNG NHAU CẠNH – CẠNH – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, BC = a, AC = b. 4 HAI TAM GIÁC BẰNG NHAU CẠNH – GÓC – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Vẽ tam giác ABC biết AB = c, AC = b và góc BAC = α. 5 HAI TAM GIÁC BẰNG NHAU GÓC – CẠNH – GÓC. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, A = α, B = β. 6 TAM GIÁC CÂN. + Dạng 1. Chứng minh tính chất của tam giác cân, tam giác đều. + Dạng 2. Chứng minh một tam giác là tam giác cân, tam giác đều. + Dạng 3. Sử dụng tam giác cân, tam giác đều để giải toán định lượng. + Dạng 4. Sử dụng tam giác cân giải bài toán định tính. 7 ĐỊNH LÍ PY – TA – GO. 8 CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. CHƯƠNG 3 . QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC.CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. 1 QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác giải toán. 2 QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng giải toán. 3 QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC – BẤT ĐẲNG THỨC TAM GIÁC. + Dạng 1. Chứng minh bất đẳng thức tam giác. + Dạng 2. Sử dụng bất đẳng thức tam giác để giải toán. 4 TÍNH CHẤT BA ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC. + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Chứng minh tính chất hình học. 5 TÍNH CHẤT TIA PHÂN GIÁC CỦA MỘT GÓC. + Dạng 1. Chứng minh tính chất tia phân giác của một góc. + Dạng 2. Chứng minh một tia là tia phân giác của một góc. + Dạng 3. Dựng tia phân giác của một góc. + Dạng 4. Sử dụng tính chất tia phân giác của một góc để giải toán. 6 TÍNH CHẤT BA ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC. 7 TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG. + Dạng 1. Chứng minh tính chất đường trung trực. + Dạng 2. Sử dụng tính chất đường trung trực để giải toán. 8 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC. + Dạng 1. Chứng minh tính chất ba đường trung trực của tam giác. + Dạng 2. Sử dụng tính chất của ba đường trung trực của tam giác để giải toán. 9 TÍNH CHẤT BA ĐƯỜNG CAO CỦA TAM GIÁC.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán
Nội dung Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề làm quen với xác suất của biến cố lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIDạng 1. Xác suất của biến cố đồng khả năng xảy raDạng 2. Áp dụng công thức tính xác suấtDạng 3. Xác suất của biến cố chắc chắn, không thểDạng 4. Xác suất của biến cố ngẫu nhiênPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Tài liệu này bao gồm 44 trang, chia thành hai phần chính: Tóm tắt lí thuyết và Hướng dẫn giải các dạng bài tập chuyên đề làm quen với xác suất của biến cố trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT Trong phần này, chúng ta sẽ được tóm tắt lý thuyết về xác suất của biến cố đồng khả năng xảy ra và các quy tắc cơ bản trong tính toán xác suất. PHẦN II. CÁC DẠNG BÀI Phần này chứa các dạng bài tập thực hành nhằm giúp học sinh hiểu rõ hơn về xác suất của biến cố trong các tình huống thực tế. Các dạng bài bao gồm: Dạng 1. Xác suất của biến cố đồng khả năng xảy ra Nếu chỉ xảy ra A hoặc B (cả A B là hai biến cố đồng khả năng xảy ra), thì xác suất của chúng bằng nhau và bằng 0,5. Trong trường hợp có k biến cố đồng khả năng và chỉ xảy ra duy nhất một biến cố trong số đó, xác suất của mỗi biến cố đó đều bằng 1/k. Dạng 2. Áp dụng công thức tính xác suất Trong dạng này, chúng ta sẽ học cách tính xác suất bằng cách đếm số phần tử của tất cả các trường hợp có thể xảy ra, sau đó tính số kết quả thỏa mãn yêu cầu bài toán và áp dụng công thức tính xác suất. Dạng 3. Xác suất của biến cố chắc chắn, không thể Trình bày và phân tích khả năng xảy ra của từng biến cố bằng cách xác định xem biến cố đó có khả năng xảy ra (a = 1) hay không thể xảy ra (a = 0). Dạng 4. Xác suất của biến cố ngẫu nhiên Bước 1: Xác định số lần xảy ra của biến cố đang xét. Bước 2: Xác định số biến cố của thực nghiệm. Bước 3: Xác suất của biến cố là tỉ số giữa số lần xảy ra của biến cố và số biến cố của thực nghiệm. PHẦN III. BÀI TẬP TỰ LUYỆN Phần này chứa các bài tập tự luyện giúp học sinh rèn luyện kỹ năng tính toán và áp dụng lý thuyết xác suất vào các bài tập cụ thể.
Chuyên đề làm quen với biến cố lớp 7 môn Toán
Nội dung Chuyên đề làm quen với biến cố lớp 7 môn Toán Bản PDF - Nội dung bài viết Tài liệu Hướng dẫn học biến cố lớp 7 môn Toán Tài liệu Hướng dẫn học biến cố lớp 7 môn Toán Trong tài liệu này, bạn sẽ được giới thiệu với các khái niệm cơ bản về biến cố trong môn Toán lớp 7. Biến cố được định nghĩa là các hiện tượng, sự kiện xảy ra trong tự nhiên hoặc cuộc sống hằng ngày. Biến cố chắc chắn là những biến cố mà chắc chắn xảy ra, trong khi biến cố không thể là những biến cố chắc chắn không xảy ra. Biến cố ngẫu nhiên là những biến cố không thể biết trước được xảy ra hay không. Tiếp theo, bạn sẽ làm quen với các dạng bài tập liên quan đến việc xác định loại biến cố của các hiện tượng, sự kiện cho trước. Bạn cũng sẽ học cách tìm ra biến cố chắc chắn, không thể, ngẫu nhiên của một sự vật hoặc hiện tượng. Bạn cần biết rằng có thể liệt kê các kết quả có thể xảy ra đối với một biến cố thành một tập hợp. Mỗi phần tử trong tập hợp đó được gọi là một kết quả thuận lợi cho biến cố. Sử dụng thông tin này để giải các bài tập tự luyện. Qua tài liệu này, bạn sẽ hiểu rõ hơn về biến cố và cách xử lý các bài tập liên quan, từ đó nâng cao kỹ năng giải toán của mình.
Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán
Nội dung Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán Chuyên đề phép cộng và phép trừ đa thức một biến lớp 7 môn Toán Bài viết này trình bày về tài liệu với 31 trang, tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề phép cộng và phép trừ đa thức một biến trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Để cộng hoặc trừ hai đa thức một biến, có thể thực hiện theo cách cộng, trừ đa thức đã học hoặc sắp xếp các hạng tử theo cùng lũy thừa của biến và thực hiện phép tính theo cột dọc tương tự như cộng, trừ các số. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Cộng trừ đa thức một biến: Bước 1 viết phép tính A B, bước 2 nhóm các hạng tử cùng bậc rồi thu gọn, bước 3 thực hiện phép tính. Dạng 2: Tìm biểu thức, tính giá trị biểu thức: Áp dụng quy tắc chuyển vế và quy tắc cộng trừ đa thức một biến để tìm đa thức M chưa biết. Dạng 3: Các bài toán thực tế giải bằng cách lập đa thức: Vận dụng kiến thức về tính chu vi diện tích hình và các tính toán thông thường để lập mối quan hệ giữa các đại lượng và tìm ra các đại lượng bằng cách cộng trừ đa thức. PHẦN III. BÀI TẬP TỰ LUYỆN: Bài tập tự luyện giúp học sinh ôn tập và củng cố kiến thức về chuyên đề phép cộng, phép trừ đa thức một biến, từ đó nắm vững cách giải các dạng bài tập.
Chuyên đề đa thức một biến lớp 7 môn Toán
Nội dung Chuyên đề đa thức một biến lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đa thức một biến lớp 7 môn Toán Chuyên đề đa thức một biến lớp 7 môn Toán Để hiểu rõ về đa thức một biến trong môn Toán lớp 7, chúng ta cần nắm vững một số kiến thức cơ bản sau đây. Đa thức một biến là tổng của những đơn thức của cùng một biến, mỗi đơn thức trong tổng là một hạng tử của đa thức. Không chỉ các đơn thức, số 0 cũng được xem là một đa thức không. Khi biểu diễn đa thức, chúng ta thường sử dụng chữ cái in hoa làm kí hiệu. Để thu gọn và sắp xếp đa thức một biến, chúng ta cần phải tính toán phép cộng các đơn thức cùng bậc và sắp xếp các hạng tử theo lũy thừa giảm của biến. Bậc của đa thức là bậc của hạng tử có bậc cao nhất, hệ số cao nhất là hệ số của hạng tử có bậc cao nhất và hệ số tự do là hệ số của hạng tử có bậc 0. Để tính giá trị của đa thức, chúng ta cần thực hiện các bước sau: thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến, thay giá trị cụ thể của biến vào đa thức và thực hiện phép tính, sau đó kết luận. Nếu muốn tìm nghiệm của đa thức, ta có thể thực hiện phương pháp so sánh giá trị đa thức với 0 để tìm ra các nghiệm của đa thức đó. Những kiến thức và kỹ năng này sẽ giúp bạn hiểu rõ hơn về chuyên đề đa thức một biến trong môn Toán lớp 7. Hãy ôn tập và thực hành các bài tập để nắm vững kiến thức và rèn luyện kỹ năng tính toán của mình.