Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán lớp 9 phần Đại số

Tài liệu gồm 32 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, tổng hợp kiến thức môn Toán lớp 9 phần Đại số, giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1 CĂN BẬC HAI – CĂN BẬC BA. 1. Căn bậc hai – Căn bậc ba. 2. Điều kiện để biểu thức xác định (có nghĩa). 3. Liên hệ phép khai phương – phép nhân – phép chia. 4. Đưa thừa số vào trong – ra ngoài căn. 5. Trục căn thức ở mẫu. 6. Giải phương trình. 7. Các dạng toán hay gặp. 8. So sánh căn bậc hai. 9. Tính giá trị của biểu thức. 10. So sánh biểu thức có chứa biến. 11. Tìm giá trị của x thỏa mãn đẳng thức (sau rút gọn). 12. Tìm giá trị của x thỏa mãn bất phương trình (sau rút gọn). 13. Tìm x nguyên, tìm x thuộc N, tìm số nguyên lớn nhất, số nguyên nhỏ nhất để giá trị của biểu thức A nguyên. 14. Tìm giá trị của x, tìm x thuộc Q; x thuộc R để giá trị biểu thức A nguyên. 15. Tìm giá trị của tham số m để A(x) = m có nghiệm. 16. Tìm giá trị của tham số m để P > f(m) hoặc P < f(m) có nghiệm, vô nghiệm. 17. Tìm giá trị lớn nhất – giá trị nhỏ nhất của biểu thức sau rút gọn. 2 HÀM SỐ BẬC NHẤT – BẬC HAI. 1. Tìm điều kiện để hàm số là hàm số bậc nhất. 2. Hàm số đồng biến – nghịch biến. 3. Hệ số góc của đường thẳng. 4. Vẽ đồ thị hàm số bậc nhất. 5. Tính diện tích các hình – độ dài các đoạn thẳng trên hệ trục. 6. Tìm giao tuyến của hai đồ thị y = f(x) và y = g(x). 7. Vẽ đồ thị hàm số y = |f(x)|. 8. Biện luận số nghiệm của phương trình f(x) = f(m) dựa vào đồ thị. 9. Vị trí tương đối giữa hai đường thẳng. 10. Hai đường thẳng cắt nhau thỏa mãn điều kiện k. 11. Lập phương trình đường thẳng. 12. Tìm điểm cố định của y = f(x;m); chứng minh đồ thị luôn đi qua điểm cố định (hoặc tìm điểm mà đồ thị luôn đi qua). 13. Ba điểm thẳng hàng – không thẳng hàng (Ba điểm là ba đỉnh tam giác). 14. Tìm điều kiện tham số để ba đường thẳng đồng quy. 15. Khoảng cách từ gốc tọa độ đến đường thẳng. 3 ĐỒ THỊ HÀM SỐ 1. Tính chất. 2. Điểm thuộc đồ thị. 3. Vị trí tương đối của đường thẳng y = f(x) = mx + n và Parabol y = g(x) = ax2. 4 GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH. 1. Phương pháp chung. 2. Dạng toán cấu tạo số. 3. Dạng toán làm chung – làm riêng – vòi nước. 4. Dạng toán chuyển động. 5. Dạng toán có nội dung hình học. 6. Dạng toán năng suất – phần trăm. 7. Dạng toán có nội dung lí hóa. 5 HỆ PHƯƠNG TRÌNH. 1. Kiểm tra (x0;y0) có phải là nghiệm của phương trình ax + by = 0 không? 2. Tìm nghiệm tổng quát của phương trình ax + by = 0. 3. Tìm nghiệm nguyên, nguyên dương, nguyên âm của ax + by = 0. 4. Dự đoán số nghiệm của hệ phương trình. 5. Giải hệ phương trình bằng phương pháp thế. 6. Giải hệ phương trình bằng phương pháp cộng. 7. Giải hệ phương trình bằng phương pháp đặt ẩn phụ. 8. Hệ phương trình chứa dấu giá trị tuyệt đối. 9.Tìm hệ số a; b biết hệ a1x + b1y = c1 và a2x + b2y = c2 có nghiệm là x0;y0. 10. Hệ phương trình tương đương. 11. Giải và biện luận hệ phương trình. 12. Tìm m để hệ có nghiệm duy nhất thỏa mãn điều kiện K. 13. Tìm hệ thức độc lập giữa x, y không phụ thuộc vào m (tìm quỹ tích điểm M(x;y) hoặc chứng minh M(x;y) nằm trên đường thẳng cố định). 6 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I. 7 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II. 8 HỆ ĐẲNG CẤP BẬC HAI. 9 PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0. 1. Giải phương trình ax2 + bx + c = 0. 2. Tìm hai số biết tổng và tích. 3. Định lý Vi-Ét. 4. Mối liên hệ giữa hai nghiệm x1; x2. 5. Giải và biện luận ax2 + bx + c = 0. 6. Chứng minh phương trình luôn có nghiệm – vô nghiệm. 7. Phương trình có hai nghiệm phân biệt – Phương trình có nghiệm kép. 8. Lập phương trình bậc hai khi biết nghiệm. 9. Tìm m để phương trình có nghiệm x0. 10. Phương trình có hai nghiệm dương phân biệt (nằm bên phải Oy). 11. Phương trình có hai nghiệm âm phân biệt (nằm bên trái trục tung). 12. Phương trình có hai nghiệm trái dấu + cùng dấu (nằm về hai phía hoặc cùng phía với Oy). 13. Tìm m để phương trình có ít nhất một nghiệm dương. 14. Phương trình có một nghiệm dương. 15. Tìm m để phương trình có ít nhất một nghiệm âm. 16. Phương trình có một nghiệm âm. 17. Tìm m để phương trình có một nghiệm. 18. Phương trình có hai nghiệm đối nhau. 19. Phương trình có hai nghiệm là nghịch đảo nhau. 20. Chứng minh có ít nhất một phương trình có nghiệm. 21. Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện. 22. Hệ thức giữa x1; x2 không phụ thuộc m. 23. Tìm giá trị lớn nhất – nhỏ nhất của biểu thức chứa x1; x2. 24. Phương trình có hai nghiệm phân biệt nguyên. 25. Tìm m để phương trình a1x2 + b1x + c1 = 0 và a2x2 + b2x + c2 = 0 có nghiệm chung. 26. So sánh một số với nghiệm của phương trình ax2 + bx + c = 0. 10 PHƯƠNG TRÌNH BẬC BA y = ax3 + bx2 + cx + d = 0. 1. Phương trình có 3 nghiệm phân biệt. 2. Phương trình có hai nghiệm phân biệt. 3. Phương trình có một nghiệm. 11 PHƯƠNG TRÌNH BẬC BỐN y = ax4 + bx2 + c. 1. Cách giải ax4 + bx2 + c = 0. 2. Phương trình có 4 nghiệm. 3. Phương trình có 3 nghiệm. 4. Phương trình có hai nghiệm. 5. Phương trình có 1 nghiệm. 6. Phương trình vô nghiệm. 7. Phương trình (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. 8. Phương trình hồi quy ax4 + bx3 + cx2 + dx + e = 0 và ad2 = eb2. 9. Phương trình dạng (x + a)4 + (x + b)4 = c. 10. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = rx2 với ab = cd. 11. Phương trình ax4 + bx3 + cx2 + bx + a = 0.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây Bản PDF Thông qua tài liệu lớp 9 môn Toán với chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây, chúng ta sẽ được học về những kiến thức cơ bản và quan trọng trong đường tròn. Trong đường tròn, chúng ta biết rằng hai dây bằng nhau thì cách đều tâm, và ngược lại, hai dây cách đều tâm thì chúng cũng bằng nhau. Điều này giúp chúng ta hiểu rõ hơn về mối quan hệ giữa dây và khoảng cách đến tâm của nó. Ngoài ra, tài liệu cũng cung cấp các dạng toán và bài tập thực hành để áp dụng kiến thức đã học. Chúng ta sẽ được giải quyết các bài toán liên quan đến việc xác định dây lớn hơn hay nhỏ hơn, dây nào gần tâm hơn hay xa tâm hơn. Tài liệu còn kèm theo đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và tự kiểm tra kết quả của mình. Điều này giúp học sinh dễ dàng nắm bắt và áp dụng kiến thức vào thực tế. Với tài liệu này, học sinh sẽ có một cách tiếp cận mới mẻ và thú vị đối với chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây trong môn Toán lớp 9.
Tài liệu lớp 9 môn Toán chủ đề vị trí tương đối của đường thẳng và đường tròn
Nội dung Tài liệu lớp 9 môn Toán chủ đề vị trí tương đối của đường thẳng và đường tròn Bản PDF Tài liệu "Vị trí tương đối của đường thẳng và đường tròn" dành cho học sinh lớp 9 là tài liệu học tập quan trọng với 14 trang bao gồm kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề này. Được tổ chức logic và dễ hiểu, tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết giúp học sinh tự học hiệu quả.Trước hết, tài liệu giới thiệu về vị trí tương đối của đường thẳng và đường tròn. Khi biết khoảng cách từ tâm đường tròn đến đường thẳng là d, học sinh có thể xác định được số điểm chung giữa hai đường này. Học sinh sẽ học được các trường hợp: d < R (2 điểm chung), d = R (1 điểm chung), và d > R (0 điểm chung), và cách xác định quan hệ giữa đường thẳng và đường tròn trong từng trường hợp.Ngoài ra, tài liệu cũng giới thiệu một định lý quan trọng: nếu một đường thẳng là tiếp tuyến của một đường tròn, thì đường thẳng đó sẽ vuông góc với bán kính đi qua tiếp điểm. Điều này giúp học sinh hiểu rõ hơn về tính chất của đường thẳng và đường tròn khi tiếp xúc.Bên cạnh đó, tài liệu cung cấp các bài tập và dạng toán phong phú, từ xác định vị trí tương đối đến tính độ dài và tính chất của tiếp điểm. Học sinh có thể áp dụng kiến thức lý thuyết đã học để giải quyết các bài toán, từ đó nâng cao kỹ năng giải toán và hiểu sâu về chủ đề này.Cuối cùng, tài liệu kết thúc bằng bài tập trắc nghiệm và bài tập về nhà, giúp học sinh ôn tập và kiểm tra kiến thức đã học. File Word đính kèm giúp giáo viên dễ dàng sử dụng tài liệu này trong quá trình giảng dạy và kiểm tra.Tóm lại, tài liệu "Vị trí tương đối của đường thẳng và đường tròn" là nguồn tư liệu hữu ích và cần thiết giúp học sinh lớp 9 hiểu sâu về chủ đề này và phát triển kỹ năng giải toán.
Tài liệu lớp 9 môn Toán chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Nội dung Tài liệu lớp 9 môn Toán chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn Bản PDF Tài liệu lớp 9 môn Toán về chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn là tài liệu hữu ích giúp học sinh hiểu rõ về khái niệm và tính chất của tiếp tuyến của đường tròn. Tài liệu bao gồm 19 trang, cung cấp kiến thức căn bản, các định lí quan trọng và các dấu hiệu nhận biết tiếp tuyến của đường tròn.Trong phần tóm tắt lý thuyết, tài liệu cung cấp định nghĩa về tiếp tuyến của đường tròn và giới thiệu hai định lí quan trọng: nếu một đường thẳng là tiếp tuyến của đường tròn thì nó vuông góc với tiếp tuyến đi qua tiếp điểm và nếu đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng đó là tiếp tuyến của đường tròn.Các dấu hiệu nhận biết tiếp tuyến của đường tròn được trình bày rõ ràng trong tài liệu, bao gồm điều kiện cần và đủ để một đường thẳng được coi là tiếp tuyến của đường tròn. Bên cạnh đó, tài liệu cung cấp các bài tập áp dụng và các dạng toán phổ biến liên quan đến chủ đề này, giúp học sinh rèn luyện kỹ năng giải toán và ứng dụng kiến thức một cách linh hoạt.Tài liệu cũng bao gồm bài tập trắc nghiệm và bài tập về nhà để học sinh tự kiểm tra và ôn tập sau khi học bài. Cuối cùng, file Word được cung cấp để giáo viên dễ dàng in ấn và sử dụng trong quá trình dạy học.Tóm lại, tài liệu lớp 9 môn Toán về dấu hiệu nhận biết tiếp tuyến của đường tròn là tài liệu hữu ích, cung cấp đầy đủ kiến thức, bài tập và đáp án chi tiết, giúp học sinh nắm vững chủ đề này và phát triển kỹ năng giải toán một cách hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề tính chất hai tiếp tuyến cắt nhau
Nội dung Tài liệu lớp 9 môn Toán chủ đề tính chất hai tiếp tuyến cắt nhau Bản PDF - Nội dung bài viết A. Tóm tắt lý thuyết:B. Bài tập và các dạng toán: Tài liệu lớp 9 môn Toán với chủ đề tính chất hai tiếp tuyến cắt nhau là một tài liệu gồm 27 trang, cung cấp kiến thức cơ bản cần nhớ, các dạng toán và bài tập liên quan đến chủ đề này trong chương trình môn Toán lớp 9. Tài liệu cung cấp đáp án và lời giải chi tiết cho từng bài tập. A. Tóm tắt lý thuyết: 1. Tính chất của hai tiếp tuyến cắt nhau: Định lí quan trọng cho biết rằng khi hai tiếp tuyến của một đường tròn cắt nhau tại một điểm, một số tính chất quan trọng sẽ xuất hiện như: các điểm đó cách đều hai tiếp điểm, các tia kẻ qua điểm đó và tâm đường tròn tạo thành các tia phân giác của các góc tạo bởi hai tiếp tuyến, và đường thẳng qua điểm đó và tâm đường tròn là đường trung trực của hai tiếp điểm. 2. Đường tròn nội tiếp tam giác và đường tròn bàng tiếp tam giác: Tính chất của đường tròn nội tiếp tam giác và đường tròn bàng tiếp tam giác, bao gồm định nghĩa và tính chất của chúng. B. Bài tập và các dạng toán: Các bài tập trong tài liệu tập trung vào việc chứng minh tính chất của các đoạn thẳng và đường thẳng khi hai tiếp tuyến cắt nhau. Các dạng toán cũng tập trung vào việc chứng minh tiếp tuyến, tính độ dài và số đo góc, sử dụng các kiến thức về tính chất của hai tiếp tuyến cắt nhau, đường tròn nội tiếp tam giác và đường tròn bàng tiếp tam giác. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh có thể ôn tập và tự kiểm tra kiến thức của mình. Để tải về file Word dành cho giáo viên, vui lòng click vào đường link phía trên.