Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án

Tài liệu gồm 296 trang, tuyển tập 3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Trích dẫn tài liệu 3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án: + Có một khối gỗ dạng hình chóp O.ABC có OA, OB, OC đôi một vuông góc với nhau, OA = 3 cm, OB = 6 cm, OC = 12 cm. Trên mặt (ABC) người ta đánh dấu một điểm M sau đó người ta cắt gọt khối gỗ để thu được một hình hộp chữ nhật có OM là một đường chéo đồng thời hình hộp có 3 mặt nằm trên 3 mặt của tứ diện (xem hình vẽ). Thể tích lớn nhất của khối gỗ hình hộp chữ nhật bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành. Góc tạo bởi mặt bên (SAB) với đáy bằng α. Tỉ số diện tích của tam giác SAB và hình bình hành ABCD bằng k. Mặt phẳng (P) đi qua AB và chia hình chóp S.ABCD thành hai phần có thể tích bằng nhau. Gọi β là góc tạo bởi mặt phẳng (P) và mặt đáy. Tính cot β theo k và α. + Nhân ngày Phụ Nữ Việt Nam 20/10/2020, ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp. Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp, biết rằng độ dày lớp mạ vàng tại mọi điểm trên hộp là như nhau. Gọi chiều cao và độ dài cạnh đáy của chiếc hộp lần lượt là h và x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h và x phải là?

Nguồn: toanmath.com

Đọc Sách

Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích
Nội dung Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Bản PDF - Nội dung bài viết Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Cuốn sách Chinh phục điểm 8 – 9 – 10 bài tập trắc nghiệm Giải tích có 338 trang được biên soạn bởi các tác giả Mẫn Ngọc Quang, Đỗ Xuân Sỹ, Phạm Minh Tuấn nhằm mục đích giúp các em học sinh luyện tập các dạng toán vận dụng cao thường gặp trong đề thi THPT Quốc gia môn Toán. Nội dung sách được chia thành 8 phần cụ thể để học sinh dễ dàng theo dõi và ôn tập. Phần 1 tập trung vào các nội dung liên quan đến hàm số nâng cao, bao gồm cách giải nhanh, các phương pháp chứng minh, và các bài toán áp dụng. Phần 2 tập trung vào bài toán thực tế và tối ưu kinh doanh để học sinh hiểu rõ ứng dụng của toán học trong cuộc sống. Phần 3 tập trung vào mũ và logarit nâng cao, giúp học sinh nắm vững kiến thức cơ bản và ứng dụng chúng vào các bài toán phức tạp. Phần 4 tập trung vào tích phân ứng dụng và cách sử dụng Casio để tính toán một cách nhanh chóng và chính xác. Phần 5 bàn về biểu thức tổ hợp và nhị thức Newton, phần 6 tập trung vào số phức và các phương pháp tính toán liên quan. Phần 7 tập trung vào xác suất và luyện tập bài toán cao cấp. Phần 8 tập trung vào tính liên tục của hàm số để học sinh có cái nhìn tổng quan về toán học phổ biến và ứng dụng rộng rãi. Tổng thể, cuốn sách này là một tài liệu hữu ích cho học sinh muốn nắm vững và áp dụng kiến thức giải tích vào thực tế, cung cấp đầy đủ các dạng bài tập và phương pháp giải chi tiết, phù hợp cho việc ôn tập và rèn luyện kỹ năng toán học của học sinh.