Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Đắk Nông

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Đắk Nông tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Đắk Nông. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Đắk Nông, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Đắk Nông : + Một mảnh vườn hình chữ nhật có diện tích bằng 1200 m2. Tính chiều dài và chiều rộng của mảnh vườn hình chữ nhật đó, biết rằng chiều dài hơn chiều rộng là 10 m. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 1/abc. Tìm giá trị nhỏ nhất của biểu thức P = (a + b)(a + c). [ads] + Cho một điểm M nằm bên ngoài đường tròn (O;6cm). Kẻ hai tiếp tuyến MN, MP (N, P là hai tiếp điểm) của đường tròn (O). Vẽ cát tuyến MAB của đường tròn (O) sao cho đoạn thẳng AB = 6cm với A, B thuộc đường tròn (O), A nằm giữa M và B. a) Chứng minh tứ giác OPMN nội tiếp đường tròn. b) Gọi H là trung điểm đoạn thẳng AB. So sánh góc MON và góc MHN. c) Tính diện tích hình viên phân giới hạn bởi cung nhỏ AB và dây AB của hình tròn tâm (O).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bạc Liêu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bạc Liêu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bạc Liêu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bạc Liêu, kỳ thi được diễn ra vào ngày 07/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bạc Liêu : + Cho hàm số y = 3x^2 có đồ thị (P) và đường thẳng (d): y = 2x + 1. Tìm tọa độ gia0 điểm của (P) và (d) bằng phép tính. + Trên nửa đường tròn đường kính AB, lấy hai điểm I, Q sao cho I thuộc cung AQ. Gọi C là giao điểm hai tia AI và BQ, H là giao điểm hai dây AQ và BI. a) Chứng minh tứ giác CIHQ nội tiếp. b) Chứng minh: CI.AI = HI.BI. c) Biết AB = 2R. Tính giá trị biểu thức: M = AI.AC + BQ.BC theo R. [ads] + Cho phương trình: x^2 – 2mx – 4m – 5 = 0 (m là tham số). a) Giải phương trình khi m = −2. b) Chứng minh phương trình luôn có nghiệm với mọi giá trị của m. c) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để: 1/2.x1^2 – (m – 1)x1 + x2 – 2m + 33/2 = 762019.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bà Rịa - Vũng Tàu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bà Rịa – Vũng Tàu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu, kỳ thi được diễn ra vào ngày 13/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bà Rịa – Vũng Tàu : + Có một vụ tai nạn ở vị trí B tại chân của một ngọn núi (chân núi có dạng đường tròn tâm O, bán kính 3 km) và một trạm cứu hộ ở vị trí A (tham khảo hình vẽ). Do chưa biết đường đi nào để đến vị trí tai nạn nhanh hơn nên đội cứu hộ quyết định điều hai xe cứu thương cùng xuất phát ở trạm đến vị trí tai nạn theo hai cách sau: Xe thứ nhất: đi theo đường thẳng từ A đến B, do đường xấu nên vận tốc trung bình của xe là 40 km/h. Xe thứ hai: đi theo đường thẳng từ A đến C với vận tốc trung bình 60 km/h, rồi đi từ C đến B theo đường cung nhỏ CB ở chân núi với vận tốc trung bình 30 km/h (3 điểm A, O, C thẳng hàng và C ở chân núi). Biết đoạn đường AC dài 27 km và góc ABO = 90 độ. a) Tính độ dài quãng đường xe thứ nhất đi từ A đến B. b) Nếu hai xe cứu thương xuất phát cùng một lúc tại A thì xe nào thì xe nào đến vị trí tai nạn trước? [ads] + Cho nửa đường tròn tâm O đường kính AB và E là điểm tùy ý trên nửa đường tròn đó (E khác A, B). Lấy điểm H thuộc đoạn EB (H khác E, B). Tia AH cắt nửa đường tròn tại điểm thứ hai là F. Kéo dài tia AE và tia BF cắt nhau tại I. ðường thẳng IH cắt nửa đường tròn tại P và cắt AB tại K. a) Chứng minh tứ giác IEHF nội tiếp được đường tròn. b) Chứng minh góc AIH = góc ABE. c) Chứng minh: cosABP = (PK + BK)/(PA + PB). d) Gọi S là giao điểm của tia BF và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AHIS nội tiếp được đường tròn, chứng minh EF vuông góc với EK.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bình Phước
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bình Phước. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bình Phước, kỳ thi được diễn ra vào ngày 01/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bình Phước : + Nông trường cao su Minh Hưng (xã Minh Hưng, huyện Bù Đăng, tỉnh Bình Phước) phải khai thác 260 tấn mũ trong một thời gian nhất ñịnh. Trên thực tế, mỗi ngày nông trường ñều khai thác vượt ñịnh mức 3 tấn. Do ñó, nông trường ñã khai thác ñược 261 tấn và song trước thời hạn 1 ngày. Hỏi theo kế hoạch mỗi ngày nông trường khai thác ñược bao nhiêu tấn mũ cao su. [ads] + Cho parabol (P): y = 1/2.x^2 và ñường thẳng (d): y = x + 2. a) Vẽ parabol (P) và ñường thẳng (d) trên cùng hệ trục tọa ñộ Oxy. b) Viết phương trình ñường thẳng (d1): y = ax + b song song với (d) và cắt (P) tại ñiểm A có hoành ñộ bằng −2 . + Không sử dụng máy tính, giải hệ phương trình 2x + y = 5  và x + 2y = 4.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bình Định
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bình Định. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bình Định, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bình Định : + Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được 2/3 công việc. Nếu làm riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? [ads] + Cho đường tròn tâm O, bán kính R và một đường thẳng d không cắt đường tròn (O). Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H. Trên đường thẳng d lấy điểm K (khác điểm H ), qua K vẽ hai tiếp tuyến KA và KB với đường tròn (O), (A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK. a) Chứng minh tứ giác KAOH nội tiếp được trong đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại điểm I. Chứng minh rằng IA.IB = IH.IO và I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. c) Khi OK = 2R, OH = R√3. Tính diện tích tam giác KAI theo R. + Cho phương trình: x^2 – (m – 1)x – m = 0. Tìm m để phương trình trên có một nghiệm bằng 2. Tính nghiệm còn lại.