Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Anh Sơn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Anh Sơn – Nghệ An : + Một người mang một số tiền vào siêu thị mua hoa quả và nhẩm tính với số tiền đó có thể mua được 3kg nho hoặc 4kg táo hoặc 5kg mận. Tính giá tiền mỗi loại, biết 3kg táo đắt hơn 2kg mận là 210 000 đồng. + Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm BC. a) Chứng minh các tam giác DAB và DAC vuông cân. b) Lấy điểm M bất kỳ trên đoạn CD. Kẻ các đoạn thẳng BE và CF vuông góc với đường thẳng AM (E; F thuộc đường thẳng AM). Chứng minh rằng: BE = AF. c) Chứng minh tam giác DEF vuông cân. + Cho ABC cân tại B, có ABC = 80 độ. Lấy điểm I nằm trong tam giác sao cho IAC = 10 độ và ICA = 30 độ. Tính số đo AIB.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).