Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Sơn Hòa Phú Yên

Nội dung Đề thi chọn HSG huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Sơn Hòa Phú Yên Bản PDF - Nội dung bài viết Sytu giới thiệu về Đề Thi Chọn HSG Huyện Lớp 8 Môn Toán Sytu giới thiệu về Đề Thi Chọn HSG Huyện Lớp 8 Môn Toán Chào đón quý thầy cô giáo và các em học sinh lớp 8! Sytu hân hạnh giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 cho năm học 2021 - 2022, được tổ chức bởi Phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 16 tháng 04 năm 2022. Một cơ hội để các em học sinh thể hiện tài năng và kiến thức Toán của mình, cũng như thách thức mình với những bài toán thú vị và khó khăn. Hy vọng rằng các em sẽ cố gắng hết mình và có kết quả xuất sắc trong kỳ thi sắp tới. Chúng tôi tin rằng sự nỗ lực của các em sẽ được đền đáp xứng đáng. Hãy chuẩn bị kỹ lưỡng, rèn luyện kiến thức và kỹ năng giải bài toán Toán để chuẩn bị cho kỳ thi sắp tới. Chúc các em thành công và đạt kết quả tốt trong kỳ thi chọn HSG huyện môn Toán lớp 8 năm học 2021 - 2022!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Phụ Thái Bình
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Phụ Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ Thái Bình Đề học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ Thái Bình Xin chào quý thầy cô và các em học sinh lớp 8! Sytu hân hạnh giới thiệu đến quý vị đề thi chọn học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 từ phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Dưới đây là một số bài toán trong đề thi: 1. Xác định đa thức P(x) biết P(x) chia hết cho đa thức x + 1 dư 4, chia cho đa thức x + 2 dư 6, và chia cho đa thức x^2 + 3x + 2 được thương là x + 3 và còn dư. Đề bài yêu cầu tìm ba số dương a, b, c thoả mãn a + b + c = 1, rồi tính giá trị nhỏ nhất của biểu thức M = 1/a + 1/4b + 1/16c. 2. Trong tam giác ABC vuông tại A (AB < AC), với đường cao AH. Gọi điểm M trên tia HC sao cho HM = AH. Kết hợp với vẽ hình bình hành AHMN, MN cắt AC tại E để chứng minh các điều kiện sau: a. AB = AE; b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. 3. Cho tam giác ABC có góc ABC = 120° và đường phân giác BD, AE, CF. Câu hỏi yêu cầu chứng minh rằng 1/BD = 1/BA + 1/BC và tính góc EDF. Hy vọng rằng các em sẽ học tập và giải quyết các bài toán trên một cách chăm chỉ và thành công. Chúc các em đạt được kết quả cao trong kỳ thi học sinh giỏi Toán sắp tới!
Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM
Nội dung Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Sytu xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 8, đề thi chọn học sinh giỏi lần thứ 2 môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn từ Đề học sinh giỏi lần 2 Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thủ Đức - TP HCM: Cho tam giác ABC có ba góc nhọn (AB < AC) và ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: Tam giác BFC đồng dạng với tam giác BDA và góc BFD = góc ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Vẽ đường thẳng qua M vuông góc với HM, cắt AB, AD, AC tại P, Q, R. Chứng minh: PQ = QR. Hai địa điểm A và B cách nhau 200 km. Xe ô tô và xe máy khởi hành cùng lúc từ A và B đi ngược chiều. Mỗi xe đi với vận tốc khác nhau và gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau một giờ so với xe máy, hỏi chúng sẽ gặp nhau tại điểm D cách C bao nhiêu km? Biết vận tốc của xe ô tô lớn hơn 20 km/h so với xe máy. Cho tứ giác ABCD có các trung điểm M, N, P, Q lần lượt của các cạnh AB, BC, CD, DA. Điểm I nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết S(AIQM) = 32 (cm2), S(BMIN) = 50 (cm2) và S(DPIQ) = 20 (cm2). Nội dung đề thi trên cung cấp cho các em học sinh những bài toán thú vị và bổ ích, giúp họ rèn luyện kỹ năng giải quyết vấn đề, logic suy luận và tính toán trong môn học Toán. Chúc các em thành công trong kỳ thi sắp tới!
Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT thành phố Thanh Hóa
Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT thành phố Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GD&ĐT thành phố Thanh Hóa Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GD&ĐT thành phố Thanh Hóa Chào mừng đến với đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo thành phố Thanh Hóa tổ chức. Kỳ thi sẽ diễn ra vào ngày 10 tháng 03 năm 2023. Dưới đây là một số câu hỏi đặc sắc từ đề thi: 1. Tìm nghiệm nguyên của phương trình: \( x^2y^2 = 4x^2y - y^3 - 8 + 3y^2 - 1 \). 2. Cho số tự nhiên \( n \geq 2 \) và số nguyên tố \( p \) thoả mãn \( p - 1 \) chia hết cho \( n \) đồng thời \( n^3 - 1 \) chia hết cho \( p \). Chứng minh rằng: \( n + p \) là một số chính phương. 3. Cho hình vuông \( ABCD \) cạnh \( a \). Trên cạnh \( BC \) lấy điểm \( M \) (khác \( B \) và \( C \)), qua điểm \( A \) kẻ tia \( Ax \) vuông góc với \( AM \) cắt tia \( CD \) tại điểm \( F \). - Chứng minh rằng \( AM = AF \). - Trên cạnh \( CD \) lấy điểm \( N \) sao cho \( MAN = 45^\circ \), gọi giao điểm của \( AM \), \( AN \) với \( BD \) lần lượt tại \( Q \) và \( P \); gọi \( I \) là giao điểm của \( MP \) và \( NQ \). Chứng minh: \( AI \) vuông góc \( MN \) tại \( H \). - Tìm giá trị nhỏ nhất của diện tích tam giác \( AMN \) khi \( M \), \( N \) thay đổi. Hy vọng các em học sinh sẽ học tập và ôn tập chuẩn bị tốt để đạt kết quả cao trong kỳ thi này. Chúc các em thành công!
Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Anh Sơn Nghệ An
Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Anh Sơn Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Anh Sơn - Nghệ An Đề thi HSG cấp huyện Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Anh Sơn - Nghệ An Chào mừng quý thầy cô và các em học sinh lớp 8 tham gia vào đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Đề thi năm nay đầy hấp dẫn và thách thức, hãy cùng Sytu khám phá những bài toán thú vị dưới đây: 1. Tìm giá trị của n thuộc N sao cho biểu thức C = n3 - n2 + n - 1 là số nguyên tố. 2. Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P. Gọi M là điểm đối xứng với C qua P. Gọi E và F lần lượt là hình chiếu của M lên AB, AD. Chứng minh rằng: a) Tứ giác AEMF là hình chữ nhật b) Tứ giác ADBM là hình thang c) Ba điểm E, F, P thẳng hàng. 3. Cho hình thang ABCD (AB // CD). Gọi O là giao điểm hai đường chéo AC và BD. Từ A vẽ đường thẳng song song với BC cắt BD tại E. Từ B vẽ đường thẳng song song với AD cắt AC tại G. Chứng minh rằng: a) $\frac{OE}{OB} = \frac{OG}{OA}$ b) $AB^2 = EG \cdot DC$ Chúc quý thầy cô và các em học sinh có một kỳ thi thành công và đạt kết quả tốt nhất trong kỳ thi HSG cấp huyện toán lớp 8 năm 2022 - 2023.