Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Phụ Thái Bình

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Phụ Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ Thái Bình Đề học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ Thái Bình Xin chào quý thầy cô và các em học sinh lớp 8! Sytu hân hạnh giới thiệu đến quý vị đề thi chọn học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 từ phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Dưới đây là một số bài toán trong đề thi: 1. Xác định đa thức P(x) biết P(x) chia hết cho đa thức x + 1 dư 4, chia cho đa thức x + 2 dư 6, và chia cho đa thức x^2 + 3x + 2 được thương là x + 3 và còn dư. Đề bài yêu cầu tìm ba số dương a, b, c thoả mãn a + b + c = 1, rồi tính giá trị nhỏ nhất của biểu thức M = 1/a + 1/4b + 1/16c. 2. Trong tam giác ABC vuông tại A (AB < AC), với đường cao AH. Gọi điểm M trên tia HC sao cho HM = AH. Kết hợp với vẽ hình bình hành AHMN, MN cắt AC tại E để chứng minh các điều kiện sau: a. AB = AE; b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. 3. Cho tam giác ABC có góc ABC = 120° và đường phân giác BD, AE, CF. Câu hỏi yêu cầu chứng minh rằng 1/BD = 1/BA + 1/BC và tính góc EDF. Hy vọng rằng các em sẽ học tập và giải quyết các bài toán trên một cách chăm chỉ và thành công. Chúc các em đạt được kết quả cao trong kỳ thi học sinh giỏi Toán sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Ninh Phước - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Ninh Phước – Ninh Thuận : + Cho biểu thức A = (x – 1)(x + 2)(x + 3)(x + 6). Tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. + Cho hình bình hành ABCD có DC = 2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng. + Cho tam giác ABC vuông tại A có AD là phân giác,biết BD = 14 3 17 cm, CD = 3 9 17 cm. Tính độ dài các cạnh góc vuông của tam giác.
Đề thi HSG Toán 8 năm 2018 - 2019 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 8 - Hồ Khắc Vũ
Tài liệu gồm 89 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 8 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy - Hưng Yên
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy – Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi : + Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D, kẻ DN vuông góc với AC và DM vuông góc AB. Kẻ đường cao AH của tam giác ABC. a. Tứ giác AMDN là hình gì? Vì sao? b. Tìm vị trí điểm D trên cạnh BC thì MN có độ dài nhỏ nhất? Vẽ hình đúng với vị trí của điểm D đó? c. Tính số đo góc MHN? [ads] + Chứng minh rằng biểu thức (x – 1 )(2x^2 + x + 1) – ( x – 2)(2x^2 + 3x + 6) có giá trị không phụ thuộc vào các biến? + Tìm các giá trị x; y nguyên dương sao cho 9xy + 3x + 3y = 51 + Tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 – 4xy + 6x – 14y + 15