Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT Lương Sơn - Hòa Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán cấp THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Sơn, tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày … tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT Lương Sơn – Hòa Bình : + Có hai can đựng dầu, can thứ nhất đang chứa 48 lít và can thứ hai đang chứa 32 lít. Nếu rót từ can thứ nhất sang cho đầy can thứ hai thì lượng dầu trong can thứ nhất chỉ còn lại một nửa thể tích của nó. Nếu rót từ can thứ hai sang cho đầy can thứ nhất thì lượng dầu trong can thứ hai chỉ còn lại một phần ba thể tích của nó. Tính thể tích của mỗi can. + Cho đường thẳng y = (m − 2)x – 2m + 1 (d) 1) Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m 2) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất 3) Tìm m để đường thẳng d tạo với các trục tọa độ tam giác có diện tích bằng 1/2. + Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. a) Chứng minh rằng: MN vuông góc với AB b) Gọi E là giao điểm của BM và Ax. Chứng minh rằng: AC = CE c) Gọi K là giao điểm của AD và đường tròn (O). Chứng minh rằng: BM.BE = AK.AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.
Đề thi học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề thi học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho một mảnh đất hình vuông, chiều dài mỗi cạnh là 1000m. Trên mảnh đất đã trồng 4500 cây ăn trái các loại, cây lớn nhất có đường kính 0,5m. Người ta muốn xây dựng các căn nhà nghỉ dưỡng trên mảnh đất này để làm khu du lịch sinh thái. Hãy chứng minh rằng người ta có thể xây dựng được ít nhất 60 căn nhà nghỉ dưỡng trên mảnh đất (với diện tích mỗi căn nhà là 200m2) mà không phải chặt đi một cây ăn trái nào đã trồng trên mảnh đất. + Cho đường tròn tâm O đường kính AB (A, B cố định). Lấy hai điểm M, N lần lượt thuộc hai nửa đối nhau của đường tròn (O) sao cho góc MAN luôn bằng 60° (M khác B; N khác B). Đường thẳng BN cắt tia AM tại E, đường thẳng BM cắt tia AN tại F. a) Tính tỉ số EF AB. b) Khi tam giác AMN đều, gọi C là điểm di động trên cung nhỏ AN (C khác A; C khác N). Đường thẳng qua M và vuông góc với AC cắt đường thẳng NC tại D. Xác định vị trí của điểm C để diện tích tam giác MCD là lớn nhất. + Cho tấm bìa hình tam giác ABC có trọng tâm G. Gấp tấm bìa theo đường EF sao cho đỉnh C trùng với trọng tâm G (E, F lần lượt nằm trên hai cạnh CA, CB). Khi đó, chứng minh rằng: AC BC EC FC 6.