Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

395 bài tập trắc nghiệm thể tích khối đa diện cơ bản - Nguyễn Bảo Vương

Tài liệu 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản – Nguyễn Bảo Vương gồm 85 trang với phần tóm tắt lý thuyết, công thức tính và 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản, dành cho học sinh trung bình, có đáp án ở cuối tài liệu. Nội dung tài liệu : + ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9-10 + ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P). Định lý 2 : Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. Định lý 3 : Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. Định lý 2 : Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. Định lý 3 : Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. [ads] B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I. Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. II. Các định lý Định lý 1 : Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). Định lý 2 : (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). §2.HAI MẶT PHẲNG VUÔNG GÓC I. Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90 độ. II. Các định lý Định lý 1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. Định lý 2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). Định lý 3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P). Định lý 4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)). 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì S’ = Scosα, trong đó α là góc giữa hai mặt phẳng (P) và (P’). ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. THỂ TÍCH KHỐI ĐA DIỆN LOẠI 1: THỂ TÍCH LĂNG TRỤ Dạng 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy Dạng 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng 3. Lăng trụ đứng có góc giữa 2 mặt phẳng Dạng 4. Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Dạng 1. Khối chóp có cạnh bên vuông góc với đáy Dạng 2. Khối chóp có một mặt bên vuông góc với đáy Dạng 3. Khối chóp đều Dạng 4. Khối chóp & phương pháp tỷ số thể tích

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm cực trị hình học trong số phức
Tài liệu gồm 56 trang, tuyển chọn các bài tập trắc nghiệm cực trị hình học trong số phức, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 4: Số Phức. + Vấn đề 1. Điểm và đường thẳng. + Vấn đề 2. Điểm và đường tròn. + Vấn đề 3. Đường thẳng và đường tròn. + Vấn đề 4. Đường tròn và đường tròn. + Vấn đề 5. Parabol. + Vấn đề 6. Đoạn thẳng – tia. + Vấn đề 7. Phương pháp lấy đối xứng. + Vấn đề 8. Tâm tỉ cự. + Vấn đề 9. Phương pháp cân bằng hệ số. + Vấn đề 10. Elip.
Bài tập tuyển chọn số phức - Nguyễn Hoàng Việt
Tài liệu gồm 79 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp các bài tập tuyển chọn chuyên đề số phức, giúp học sinh lớp 12 rèn luyện khi học chương trình Giải tích 12 chương 4. Chương 4 . SỐ PHỨC 1. Bài 1. CƠ BẢN VỀ SỐ PHỨC 01 1. Bài 2. CƠ BẢN VỀ SỐ PHỨC 02 11. Bài 3. PHƯƠNG TRÌNH PHỨC VỚI HỆ SỐ THỰC 20. Bài 4. PHƯƠNG TRÌNH HỆ SỐ PHỨC 29. Bài 5. XỬ LÝ MODULE PHỨC 34. Bài 6. CƠ BẢN MẶT PHẲNG PHỨC 41. Bài 7. BẤT ĐẲNG THỨC TAM GIÁC PHỨC 58. Bài 8. KĨ NĂNG BÌNH PHƯƠNG VÔ HƯỚNG PHỨC 64.
400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Minh Tâm, tuyển chọn 400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết; các câu hỏi và bài tập được phân loại thành 10 dạng toán; tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và ôn thi tốt nghiệp THPT môn Toán. + Dạng toán 1. Các phép toán số phức (Trang 3). + Dạng toán 2. Phần thực – phần ảo của số phức (Trang 10). + Dạng toán 3. Số phức liên hợp (Trang 13). + Dạng toán 4. Module số phức (Trang 17). + Dạng toán 5. Phương trình bậc nhất (Trang 22). + Dạng toán 6. Phương trình bậc hai & mối liên hệ giữa hai nghiệm (Trang 28). + Dạng toán 7. Phương trình bậc cao (Trang 44). + Dạng toán 8. Biểu diễn số phức (Trang 52). + Dạng toán 9. Tập hợp điểm biểu diễn số phức (Trang 66). + + Dạng toán 9.1. Tập hợp điểm biểu diễn là đường thẳng (Trang 66). + + Dạng toán 9.2. Tập hợp điểm biểu diễn là đường tròn (Trang 72). + + Dạng toán 9.3. Tập hợp điểm biểu diễn là đường Coníc (Trang 79). + Dạng toán 10. Max – min của module số phức (Trang 83).
Các dạng bài tập VDC số phức
Tài liệu gồm 57 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC số phức: CHỦ ĐỀ 1 . KHÁI NIỆM SỐ PHỨC VÀ CÁC PHÉP TOÁN CỦA SỐ PHỨC. Dạng 1: Thực hiện các phép toán của số phức, tìm phần thực phần ảo. Dạng 2. Tìm số phức liên hợp, tính môđun số phức. Dạng 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 4. Tìm số phức thỏa mãn điều kiện cho trước. Dạng 5: Bài toán tập hợp điểm biểu diễn số phức. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai. CHỦ ĐỀ 3 . CỰC TRỊ SỐ PHỨC. Dạng 1: Phương pháp hình học. Dạng 2: Phương pháp đại số.