Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến quý vị đề thi học sinh giỏi môn Toán lớp 8 năm 2014 - 2015 từ phòng GD&ĐT Bình Giang - Hải Dương. Đề thi này bao gồm đáp án, lời giải và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức của mình. Trích dẫn một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Hãy chứng minh tứ giác BEDF là hình bình hành. Câu 2: Chứng minh rằng: CH.CD = CB.CK. Câu 3: Chứng minh rằng: AB.AH + AD.AK = AC2. Câu 4: Một người đi xe máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Hãy tính khoảng cách AB. Câu 5: Cho biểu thức A. 1) Tìm ĐKXĐ rồi rút gọn biểu thức A. 2) Tính giá trị của biểu thức A biết |x - 7| = 4. Đây là những câu hỏi thú vị và đa dạng trong đề thi. Hy vọng các em sẽ thấy hứng thú và tìm hiểu để có thể giải quyết chúng một cách thành công. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ
Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 của phòng GD&ĐT Thanh Thủy - Phú Thọ được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận. Đề bao gồm 16 câu trắc nghiệm (chiếm 08 điểm) và 04 câu tự luận (chiếm 12 điểm), thời gian làm bài là 150 phút. Đề thi cung cấp đáp án cho phần trắc nghiệm và lời giải chi tiết cho phần tự luận. Trích dẫn một số câu hỏi từ đề thi: Một ngày trong năm được gọi là ngày nguyên tố nếu cả số ngày và số tháng đều là số nguyên tố. Hỏi trong năm 2019 có bao nhiêu ngày nguyên tố? Một quả bóng đá được khâu từ 32 miếng da. Suất từng miếng màu ngũ giác đen khâu với 5 miếng màu trắng, và mỗi miếng màu lục giác trắng khâu với 3 miếng màu đen. Số miếng màu trắng là bao nhiêu? Cho tam giác ABC. Đường thẳng xy đi qua A và cắt cạnh BC tại M. Gọi H, K lần lượt là chân đường vuông góc kẻ từ B và C xuống xy. Xác định vị trí đường thẳng xy để tổng BH + CK đạt giá trị lớn nhất. Đề thi này giúp học sinh rèn luyện kỹ năng giải các bài toán toán học, đồng thời phát triển tư duy logic và khả năng suy luận. Qua đó, học sinh có cơ hội nâng cao kiến thức và kỹ năng trong môn Toán, chuẩn bị tốt cho kỳ thi HSG và các kỳ thi quan trọng khác.
Đề thi HSG Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề thi HSG Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF Đề thi HSG Olympic Toán lớp 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An Đề thi HSG Olympic Toán lớp 8 năm 2020 – 2021 của phòng GD&ĐT Quỳnh Lưu – Nghệ An bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút. Dưới đây là một số bài toán trích dẫn từ đề thi này: Bài 1: Tìm cặp số nguyên x, y thỏa mãn. Bài 2: Hai bạn Lan và Hoa vào cửa hàng sách. Lan mua một số quyển vở, còn Hoa không những mua gấp đôi số quyển vở của Lan mua mà còn nhiều hơn một quyển nữa. Hãy tính số quyển vở mỗi bạn mua. Biết rằng số quyển vở Lan mua là một số nguyên tố, số quyển vở Hoa mua là lập phương của một số tự nhiên. Bài 3: Một tam giác có độ dài ba cạnh là a, b, c và chu vi là 2. Chứng minh rằng: a2 + b2 + c2 + 2abc < 2. Bạn hãy xem xét và giải quyết các bài toán trên một cách cẩn thận và chính xác để có thể đạt kết quả tốt nhất trong đề thi này.
Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An
Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Ngày ... tháng 04 năm 2021, Phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020-2021. Đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An: + Chứng minh rằng: 11^100 - 1 chia hết cho 1000. + Cho đa thức f(x) chia cho đa thức x - 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Hỏi dư trong phép chia đa thức f(x) cho đa thức (x^2 + 1)(x - 2) là bao nhiêu? + Trong tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Điểm D trên tia HC sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD. Đây là một số ví dụ về những câu hỏi thú vị và đầy thách thức trong đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An. Chắc chắn rằng các em học sinh đã cần phải chuẩn bị kỹ lưỡng và tự tin để đối mặt với những bài toán này. Chúc các em thành công trong kỳ thi của mình!
Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Ngày Thứ Năm 22 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội đã tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020-2021. Đề thi Olympic Toán lớp 8 cấp huyện năm 2020-2021 phòng GD&ĐT Ba Vì - Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Cụ thể một số câu hỏi trong đề thi: Tìm các số nguyên x, y thỏa mãn: xy - 4 = 2x + 3y. Tìm các số nguyên x sao cho A = x(x - 1)(x - 7)(x - 8) là một số chính phương. Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.