Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM

Nội dung Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM Bản PDF - Nội dung bài viết Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán lớp 8 năm học 2016 - 2017. Đề thi kiến thức Toán môn Toán lớp 8 năm 2016 - 2017 của phòng GD&ĐT Quận 1 - TP HCM đã được công bố với đáp án và lời giải chi tiết. Trong đề thi, có một số câu hỏi thú vị như sau: + Đề bài 1: Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh lớp 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh lớp 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Hãy tìm số học sinh ban đầu của mỗi lớp. + Đề bài 2: Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: tam giác HED đồng dạng với tam giác HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Đề bài 3: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M sao cho tổng bình phương x2 + y2 + z2 đạt giá trị nhỏ nhất. Đề thi này không chỉ giúp học sinh rèn luyện và kiểm tra kiến thức mà còn khuyến khích họ tìm hiểu sâu và áp dụng lý thuyết vào thực hành. Chắc chắn rằng đề thi sẽ đem lại nhiều trải nghiệm bổ ích cho các em học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. 1) Chứng minh tứ giác AMCE là hình bình hành. 2) Chứng minh các tam giác ADE và ECN bằng nhau. 3) Đường thẳng qua A vuông góc với AE cắt đường thẳng qua N vuông góc với NE tại điểm F. Chứng minh tứ giác AENF là hình vuông. 4) Gọi K là giao điểm của EN với PC, L là giao điểm của EF với AN. Tính tỉ số diện tích của hai tam giác NKL và NEP. + Thí sinh lựa chọn làm một (chỉ một) câu trong hai câu sau: 1) Chứng minh rằng nếu 2n (với n N) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương. 2) Tìm giá trị nhỏ nhất và giá trị lớn nhất của 2 6 2 3 1 x A x. + Cho biểu thức 3 3 3 3 3 A 1 2 3 … 2022 2023. Tìm số dư khi chia số A cho 3.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Sầm Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Cho biểu thức: A. Rút gọn biểu thức A. Tính giá trị biểu thức A khi x thỏa mãn: x3 − 2×2 − 5x + 6 = 0. Cho a, b, c là ba số đôi một không đối nhau thỏa mãn: ab + bc + ca = 5. Tính giá trị của biểu thức: P. + Tìm các cặp số nguyên (x;y) thỏa mãn: x2 + xy = 2022x + 2023y + 2024. Cho x, y là các số nguyên sao cho x2 − 2xy − y2 và xy − 2y2 − x đều chia hết cho 5. Chứng minh rằng 2×2 + y2 + 2x + y cũng chia hết cho 5. + Cho hình vuông ABCD. Gọi E, K lần lượt là trung điểm của AB và CD; O là giao điểm của AK và DE. Hạ DM vuông góc CE. 1. Chứng minh tứ giác ADKE là hình chữ nhật, từ đó suy ra AM vuông góc KM. 2. Gọi N là giao điểm của AK và BM. Chứng minh ADM cân và tính số đo của góc ANB. 3. Phân giác góc DCE cắt cạnh AD tại F. Chứng minh rằng CF ≤ 2EF.
Đề Olympic Toán 8 đợt 1 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Tìm số dư trong phép chia biểu thức (x + 2)(x + 4)(x + 6)(x + 8) + 2023 cho đa thức x2 + 10x + 21. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trong nửa mặt phẳng bờ là đường cao AH có chứa điểm C, vẽ hình vuông AHKE. Gọi P là giao điểm của AC và KE. 1) Chứng minh tam giác ABP vuông cân. 2) Gọi Q là điểm thứ tư của hình bình hành APQB, I là giao điểm của BP và AQ. Chứng minh ba điểm H, I, E thẳng hàng. 3)Tứ giác HEKQ là hình gì? Vì sao? + Hình vuông có 3 x 3 ô vuông như hình vẽ, chứa 9 số mà tổng các số ở mỗi hàng, mỗi cột, mỗi đường chéo bằng nhau được gọi là hình vuông kỳ diệu. Chứng minh rằng số ở tâm (x) của một hình vuông kỳ diệu bằng trung bình cộng của hai số còn lại cùng hàng, cùng cột hoặc cùng đường chéo.