Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ

Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Thanh Thủy Phú Thọ Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Thanh Thủy - Phú Thọ Đề thi HSG Toán lớp 8 năm 2020 - 2021 của phòng GD&ĐT Thanh Thủy - Phú Thọ được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận. Đề bao gồm 16 câu trắc nghiệm (chiếm 08 điểm) và 04 câu tự luận (chiếm 12 điểm), thời gian làm bài là 150 phút. Đề thi cung cấp đáp án cho phần trắc nghiệm và lời giải chi tiết cho phần tự luận. Trích dẫn một số câu hỏi từ đề thi: Một ngày trong năm được gọi là ngày nguyên tố nếu cả số ngày và số tháng đều là số nguyên tố. Hỏi trong năm 2019 có bao nhiêu ngày nguyên tố? Một quả bóng đá được khâu từ 32 miếng da. Suất từng miếng màu ngũ giác đen khâu với 5 miếng màu trắng, và mỗi miếng màu lục giác trắng khâu với 3 miếng màu đen. Số miếng màu trắng là bao nhiêu? Cho tam giác ABC. Đường thẳng xy đi qua A và cắt cạnh BC tại M. Gọi H, K lần lượt là chân đường vuông góc kẻ từ B và C xuống xy. Xác định vị trí đường thẳng xy để tổng BH + CK đạt giá trị lớn nhất. Đề thi này giúp học sinh rèn luyện kỹ năng giải các bài toán toán học, đồng thời phát triển tư duy logic và khả năng suy luận. Qua đó, học sinh có cơ hội nâng cao kiến thức và kỹ năng trong môn Toán, chuẩn bị tốt cho kỳ thi HSG và các kỳ thi quan trọng khác.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.