Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bến Tre

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022 - 2023 sở GD&ĐT Bến Tre Đề học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022 - 2023 sở GD&ĐT Bến Tre Sytu tự hào giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre. Kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trong đề thi này, có các bài toán được chú trọng như sau: Bài 1: Cho tam giác ABC biết ACB = 45 độ, gọi O là tâm đường tròn ngoại tiếp tam giác ABC và H là trực tâm của tam giác ABC. Đường thẳng qua O và vuông góc với CO cắt AC và BC lần lượt tại điểm K và điểm L. Chứng minh rằng: chu vi tam giác HKL bằng với đường kính của (O). Bài 2: Cho hai đường tròn (O1) và (O2) tiếp xúc ngoài nhau tại điểm T. Hai đường tròn này nằm trong đường tròn (O3) và tiếp xúc với (O3) lần lượt tại điểm M (M thuộc (O1)) và điểm N (N thuộc (O2)). Tiếp tuyến chung tại T của (O1) và (O2) cắt (O3) tại điểm P (P và O3 nằm cùng phía của đường thẳng MN). Đường thẳng PM cắt (O1) tại A (A khác M), đường thẳng PN cắt (O2) tại D (D khác N) và đường thẳng MN cắt (O1) và (O2) lần lượt tại B (B khác M) và C (C khác N). Gọi E là giao điểm của AB và CD. Đề thi này đòi hỏi sự logic, khéo léo và kỹ năng suy luận của các em học sinh. Chúc các em tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Cho S là một tập hợp có 3 phần tử là ba số tự nhiên và thỏa mãn tính chất: Tổng của hai phần tử bất kỳ thuộc tập hợp S là một số chính phương. Hỏi ba phần tử của tập hợp S đều là các số tự nhiên lẻ có được không? Giải thích. + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn tâm O đường kính AD. Kẻ DE vuông góc với BC tại E. Gọi K là trung điểm của đoạn thẳng BC, M là trung điểm của đoạn thẳng AK. Đường thẳng qua điểm E và song song với đường thẳng AK cắt đường tròn tâm D bán kính DE tại điểm N (N khác E). Đường cao AH (H thuộc BC) của tam giác ABC cắt đường tròn tâm O đường kính AD tại điểm I (I khác A). a. Chứng minh rằng BCD = CBI và CH = BE. b. Dựng hình thang cân BMPC. Chứng minh rằng ba điểm P, E, N thẳng hàng. c. Chứng minh rằng bốn điểm B, N, C, M cùng thuộc một đường tròn.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Thừa Thiên Huế : + Cho tập hợp X = {1; 2; 3; …; 20} gồm 20 số tự nhiên từ 1 đến 20. Một tập hợp A chỉ chứa các phần tử thuộc X được gọi là “tập tốt” nếu không tồn tại hai phần tử a, b thuộc A sao cho a < b và b chia hết cho a. a) Hãy tìm một “tập tốt” có đúng 10 phần tử. b) Gọi A là một “tập tốt” bất kỳ có đúng 10 phần tử. Chứng minh rằng với mọi số tự nhiên m lẻ và m < 20, luôn tồn tại a thuộc A sao cho a chia hết cho m. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, có đường cao AD và trung tuyển AM. Kẻ đường kính AE, tia EM cắt AD tại H và cắt (O) tại F (F khác E). a) Chứng minh M là trung điểm EH và BC2 = 4.ME.MF. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác FBH. c) Chứng minh tứ giác AFDM nội tiếp và BFD = MAC.