Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Đồng Đậu - Vĩnh Phúc

Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập trong giai đoạn giữa học kỳ 1 đối với học sinh khối 12, ngày … tháng 10 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc có mã đề 120, đề gồm 06 trang với 50 câu trắc nghiệm, ngoài các kiến thức Toán 12 học sinh đã học, đề thi còn các câu hỏi và bài toán thuộc chương trình Toán 11, điều này giúp học sinh khối 12 được rèn luyện thường xuyên để hướng đến kỳ thi THPT Quốc gia môn Toán năm 2020, đề thi có đáp án. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc : + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. [ads] + Đợt xuất khẩu gạo của tỉnh Vĩnh Phúc thường kéo dài trong 2 tháng (60 ngày). Người ta nhận thấy số lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^3 – 72t^2 + 405t + 3100 (1 ≤ t ≤ 60). Hỏi trong mấy ngày đó thì ngày thứ mấy có số lượng xuất khẩu gạo cao nhất? + Một sợi dây có chiều dài 28m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đợn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và hình tròn là nhỏ nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2024 lần 2 môn Toán trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 2 môn Toán trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi. Trích dẫn Đề thi thử TN THPT 2024 lần 2 môn Toán trường chuyên Lê Khiết – Quảng Ngãi : + Một chao đèn có chiều cao h là một phần mặt xung quanh của một mặt cầu có bán kính bằng R (như hình vẽ bên dưới). Vật liệu làm chao đèn là thủy tinh có giá 300.000 (đồng/2 dm). Bạn An cần đặt mua một cái chao đèn có bán kính R gấp hai lần chiều cao h và số tiền để làm chao đèn không vượt quá 10 triệu đồng. Hỏi An có thể mua được một chao đèn có chiều cao lớn nhất bằng bao nhiêu dm ? (kết quả làm tròn đến chữ số hàng phần trăm). + Cho một đa giác đều 24 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có các đỉnh là các đỉnh của đa giác trên. Tính xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều. + Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 8 cm chiều cao trong lòng cốc là 10 cm đang đựng một lượng nước. Biết rằng khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì mực nước ở đáy trùng với đường kính đáy (như hình vẽ bên dưới). Thể tích lượng nước trong cốc bằng?
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Văn Trỗi - Hà Tĩnh lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Văn Trỗi – Hà Tĩnh lần 1 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Một người nông dân muốn bán 30 tấn lúa. Nếu mỗi tấn bán với giá 4000.000 đồng thì khách hàng mua hết, nếu cứ tăng lên 300.000 đồng mỗi tấn thì có hai tấn không bán được. Vậy cần bán một tấn lúa với giá bao nhiêu để người nông dân thu được số tiền lớn nhất?2. Kể từ năm 2017 giả sử mức lạm phát ở nước ta với chu kỳ 3 năm là 12%. Năm 2017 một ngôi nhà ở thành phố X có giá là 1 tỷ đồng. Một người ra trường đi làm vào ngày 1/1/2017 với mức lương khởi điểm là P triệu đồng/1 tháng và cứ sau 3 năm lại được tăng thêm 10% và chi tiêu hàng tháng là 50% của lương. Với P bằng bao nhiêu thì sau đúng 21 năm đi làm anh ta mua được nhà ở thành phố X, biết rằng mức lạm phát và mức tăng lương không đổi. (kết quả quy tròn đến chữ số hàng đơn vị) 3. Bổ dọc một quả dưa hấu ta được tiết diện là hình elip có trục lớn là 28cm, trục nhỏ 25 cm. Biết cứ 1000cm3 dưa hấu sẽ làm được cốc sinh tố giá 20.000đ. Hỏi từ quả dưa như trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố?(Biết rằng bề dày của vỏ dưa không đáng kể, kết quả đã được quy tròn).
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Đoàn Thượng - Hải Dương lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Đoàn Thượng – Hải Dương lần 1 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: 1. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và SA = a. Điểm M thuộc cạnh SA sao cho SM/SA = k (0< k <1). Khi đó giá trị của k để mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau là? 2. Ông A gửi 200 triệu đồng vào ngân hàng Vietinbank. Lãi suất hàng năm không thay đổi là 7,5%/năm và được tính theo kì hạn là một năm. Nếu ông A hàng năm không rút lãi thì sau 5 năm số tiền ông A nhận được cả vốn và tiền lãi là bao nhiêu? (kết quả làm tròn đến hàng ngàn) 3. Người ta gọt một khối lập phương bằng gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Hùng Vương - Gia Lai lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường chuyên Hùng Vương – Gia Lai lần 1 gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA vuông góc với đáy. Biết SC tạo với mặt phẳng (ABCD) một góc 45 độ. Tính diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD? + Cho hình lập phương có cạnh bằng a và một hình trụ (T) có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi S1 là tổng diện tích 6 mặt của hình lập phương, S2 là diện tích xung quanh của hình trụ (T). Hãy tính tỉ số S1/S2. + Ông Nam gửi 100 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn một năm với lãi suất là 12% một năm. Sau n năm ông Nam rút toàn bộ tiền (cả vốn lẫn lãi). Tìm n nguyên dương nhỏ nhất để số tiền lãi nhận được hơn 40 triệu đồng. (Giả sử rằng lãi suất hàng năm không thay đổi).