Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPTQG năm 2017 2018 lớp 10 môn Toán trường Yên Dũng 3 Bắc Giang lần 3

Nội dung Đề thi thử THPTQG năm 2017 2018 lớp 10 môn Toán trường Yên Dũng 3 Bắc Giang lần 3 Bản PDF Đề thi thử THPTQG năm học 2017 – 2018 môn Toán lớp 10 trường THPT Yên Dũng số 3 – Bắc Giang lần 3 mã đề 101 gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đây là một bước chuẩn bị sớm dành cho các em học sinh lớp 10 khi mà đề thi THPT Quốc gia môn Toán từ năm 2019 trở đi sẽ chứa cả nội dung kiến thức Toán lớp 10 theo như định hướng của Bộ GD và ĐT, đề thi thử Toán lớp 10 có đáp án . Trích dẫn đề thi thử THPTQG năm 2017 – 2018 Toán lớp 10 : + Một hộ nông dân định trồng đậu và cà trên diện tích 800 m2. Nếu trồng đậu thì cần 20 công và thu 3.000.000 đồng trên 100 m2, nếu trồng cà thì cần 30 công và thu 4.000.000 đồng trên 100 m2. Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được nhiều tiền nhất khi tổng số công không quá 180. Hãy chọn phương án đúng nhất trong các phương án sau? [ads] + Một học sinh tiến hành giải phương trình √(5x + 6) = x – 6 như sau: Bước 1: Điều kiện 5x + 6 ≥ 0 ⇔ x ≥ -6/5. Bước 2: Phương trình đã cho tương đương với 5x + 6 = (x – 6)^2 ⇔ x^2 – 17x + 30 = 0 ⇔ x = 2 hoặc x = 15. Bước 3: Đối chiếu điều kiện, thấy cả 2 nghiệm thỏa mãn nên phương trình có 2 nghiệm x = 2, x = 15. Lời giải của học sinh trên? + Một số tự nhiên có hai chữ số có dạng ab, biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng 4/5 số ban đầu trừ đi 10. Khi đó a^2 + b^2 bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra định kỳ tháng 9 năm học 2017 2018 lớp 10 môn Toán trường THCS THPT Khai Minh TP. HCM
Nội dung Đề kiểm tra định kỳ tháng 9 năm học 2017 2018 lớp 10 môn Toán trường THCS THPT Khai Minh TP. HCM Bản PDF Đề kiểm tra định kỳ tháng 9 năm học 2017 – 2018 môn Toán lớp 10 trường THCS – THPT Khai Minh – TP. HCM gồm 8 bài toán tự luận, có lời giải chi tiết và thang điểm . Trích dẫn đề thi : + Giả sử ABC là một tam giác đã cho. Lập mệnh đề P ⇒ Q và Q ⇒ P rồi xét tính đúng sai của chúng, với: P: “Góc A bằng 90 độ” và Q: “BC^2 = AB^2 + AC^2” + Cho các tập hợp: A = [-5; 11] và B = (2; 18) Xác định các tập hợp: A ∪ B; A ∩ B; A \ B; B \ A và biểu diễn chúng lên trục số? + Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và giải thích mệnh đề phủ định đó đúng hay sai? a) ∃x ∈ R: x^2 = -5 b) ∀x ∈ R: x^2 + 2x + 8 = 0 [ads]
Đề ôn tập trắc nghiệm môn Toán trường THPT chuyên Lương Thế Vinh Đồng Nai
Nội dung Đề ôn tập trắc nghiệm môn Toán trường THPT chuyên Lương Thế Vinh Đồng Nai Bản PDF Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)
Đề kiểm tra chất lượng lần 1 lớp 10 môn Toán trường THPT Quảng Xương 4 Thanh Hóa
Nội dung Đề kiểm tra chất lượng lần 1 lớp 10 môn Toán trường THPT Quảng Xương 4 Thanh Hóa Bản PDF Đề kiểm tra chất lượng lần 1 môn Toán lớp 10 trường THPT Quảng Xương 4 – Thanh Hóa gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích dẫn đề thi : + Người ta làm một chiếc cổng hình parabol dạng y = -1/2x^2 có chiều rộng d=8m. Khi đó chiều cao h của cổng là? A. h = 8m B. h = 10m C. h = 7m D. h = 9m + Cho hàm số y = x^2 – 2x + 3. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hàm số đồng biến trên khoảng (2; +∞) B. Hàm số nghịch biến trên khoảng(-∞; 2) C. Đồ thị của hàm số có đỉnh I(1; 0) D. Hàm số đồng biến trên khoảng (0; +∞) [ads] + Trong một khoảng thời gian nhất định, tại một địa phương đài khí tượng thủy văn đã thống kê được: + Số ngày mưa: 10 ngày + Số ngày có gió: 8 ngày + Số ngày lạnh: 6 ngày + Số ngày mưa và gió: 5 ngày + Số ngày mưa và lạnh: 4 ngày + Số ngày lạnh và có gió: 3 ngày + Số ngày mưa lạnh và có gió: 1 ngày Vậy có bao nhiêu ngày có thời tiết xấu (có gió, mưa hoặc lạnh)?
Đề khảo sát chất lượng lớp 10 môn Toán năm học 2017 2018 trường THPT Hậu Lộc 4 Thanh Hóa lần 1
Nội dung Đề khảo sát chất lượng lớp 10 môn Toán năm học 2017 2018 trường THPT Hậu Lộc 4 Thanh Hóa lần 1 Bản PDF Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán khối 10 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa gồm 4 câu hỏi tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho hình vuông ABCD trên cạnh BC lấy điểm E. Dựng tia Ax vuông góc với AE, Ax cắt cạnh CD kéo dài tại F, kẻ trung tuyến AI của AEF, AI kéo dài cắt CD tại K. Qua E vẽ đường thẳng song song với AB cắt AI tại G. a. Chứng minh rằng tứ giác AECF nội tiếp b. Chứng minh rằng vtAB + vtEK + vtFA = vtEB + vtFK [ads] c. Chứng minh rằng vtFG = vtKE + Chứng minh rằng với mọi số thực dương a, b, c thì trong ba phương trình sau, ít nhất một phương trình có nghiệm: x^2 – 2√a.x + √bc = 0 x^2 – 2√b.x + √ac = 0 x^2 – 2√c.x + √ab = 0