Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề toán thực tế dành cho học sinh THCS - Nghiêm Xuân Huy

Tài liệu gồm 100 trang tuyển chọn và giải chi tiết 184 bài toán thực tế dành cho học sinh THCS (các lớp 6, 7, 8, 9), tài liệu được biên soạn bởi tác giả Nghiêm Xuân Huy. Trích dẫn tài liệu : + Hai chiếc xe ô tô cùng khởi hành, một chiếc từ TP HCM đi Vũng Tàu, một chiếc từ Vũng Tàu về TP HCM. Một chiếc đến nơi trễ hơn chiếc kia 1 giờ. Một chiếc chạy nhanh gấp 1,5 lần chiếc kia. Hỏi chiếc chạy nhanh chạy đến nơi mất bao lâu? + Đòn bẩy là một trong các loại máy cơ đơn giản được sử dụng nhiều trong đời sống để biến đổi lực tác dụng lên vật theo hướng có lợi cho con người. Đòn bẩy là một vật rắn được sử dụng với một điểm tựa hay là điểm quay để làm biến đổi lực tác dụng của một vật lên một vật khác. Archimedes đã từng nói: “Hãy cho tôi một điểm tựa, tôi sẽ nâng bổng trái đất lên.” Đòn bẩy và nguyên tắc đòn bẩy được sử dụng nhiều trong các máy móc, thiết bị cũng như các vật dụng thông thường trong đời sống hằng ngày. [ads] Quy tắc của đòn bẩy: F1.r1 = F2.r2. r là khoảng cách đến điểm tựa Δ. F là trọng lượng vật thể. Lưu ý phương của lực vuông góc với phương của cánh tay đòn. Giải quyết bài toán sau: Tìm X? + Giám đốc dự án xây dựng một chung cư đang phân vân giữ việc mua hẳn 4 xe tải để chở vật liệu xây dựng hoặc chỉ thuê mướn 4 xe. Nếu mua thì giá 1 xe là 250(triệu đồng), mỗi ngày tốn chi phí nhân viên chuyên chở và xăng dầu là 2(triệu đồng). Còn nếu thuê thì giá thuê 1 xe chở là 1(triệu đồng)/ ngày. Hỏi sau bao nhiêu ngày thì phương án mua xe đã bằng phương án thuê xe? Chủ đề toán thực tế là một chủ đề mới mẻ và đang được đẩy mạnh đưa vào chương trình toán cấp 3 và toán cấp 2 nhằm giúp các kiến thức toán học trở nên gần gũi hơn trong cuộc sống, và giúp học sinh biết cách vận dụng các kiến thức toán đã học sinh giải quyết các tình huống có trong thực tế.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo
Nội dung Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc BảoChủ đề I. Chứng minh đẳng thứcChủ đề II. Tính giá trị biểu thức một biếnChủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo Tài liệu này được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, với mục đích hướng dẫn học sinh cách giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức. Tài liệu gồm 94 trang, phù hợp cho học sinh lớp 8, lớp 9 và cả những ai muốn ôn thi vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm các chủ đề sau: Chủ đề I. Chứng minh đẳng thức Dạng 1: Sử dụng phép biến đổi thương đương Dạng 2: Sử dụng hằng đẳng thức quen biết Dạng 3: Sử dụng phương pháp đổi biến Dạng 4: Sử dụng bất đẳng thức Dạng 5: Sử dụng lượng liên hợp ... (và các dạng khác) Chủ đề II. Tính giá trị biểu thức một biến Dạng 1: Tính giá trị biểu thức chứa đa thức Dạng 2: Tính giá trị biểu thức chứa căn thức Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình ... (và các dạng khác) Chủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Dạng 1: Sử dụng phương pháp phân tích Dạng 2: Sử dụng phương pháp hệ số bất định Dạng 3: Sử dụng phương pháp hình học ... (và các dạng khác) Mỗi chủ đề trong tài liệu đều được chia thành ba phần: Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản và bổ sung để giải các bài tập thuộc các dạng toán Một số ví dụ: Cung cấp ví dụ minh họa để học sinh hiểu rõ về kỹ năng và phương pháp giải Bài tập vận dụng: Hệ thống bài tập phân loại theo độ khó, bao gồm cả các bài tập từ đề thi học sinh giỏi và đề thi vào lớp 10 chuyên Toán Tài liệu này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán, và chuẩn bị tốt cho kỳ thi sắp tới. Cùng với sự hướng dẫn cụ thể và ví dụ minh họa, việc ôn tập sẽ trở nên dễ dàng và hiệu quả hơn.
Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung
Nội dung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Bản PDF - Nội dung bài viết Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Tài liệu mang tựa đề "Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức" được biên soạn bởi thầy giáo Nguyễn Tài Chung. Tài liệu này hướng dẫn cách sử dụng nguyên lí Dirichle để chứng minh bất đẳng thức, đồng thời phù hợp cho việc bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nội dung bắt đầu bằng việc đưa ra một ví dụ hay về Nguyên lý Dirichle: Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Nguyên lý Dirichle đơn giản nhưng lại có tính hiển nhiên và logic. Tiếp theo, tài liệu mô tả cách áp dụng nguyên lí Dirichle vào việc chứng minh bất đẳng thức thông qua các ví dụ cụ thể. Ví dụ về việc chọn "điểm rơi" để giả sử để chứng minh bất đẳng thức, và cách xử lý khi đã chọn được điểm đó. B. BÀI TẬP Phần này tập trung vào việc thực hành các bài tập liên quan đến sử dụng nguyên lí Dirichle chứng minh bất đẳng thức. Học sinh sẽ được yêu cầu tự giải các bài tập, từ đó củng cố kiến thức và kỹ năng của mình trong việc áp dụng nguyên lí này. Đây là một tài liệu hữu ích và có thể giúp học sinh hiểu rõ hơn về nguyên lí Dirichle và cách áp dụng nó vào việc chứng minh bất đẳng thức. Việc thực hành các bài tập cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic trong Toán.
5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng
Nội dung 5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu được soạn bởi thầy giáo Lê Văn Hưng, tập hợp 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, bao gồm 182 trang đầy đủ kiến thức cần thiết từ lý thuyết đến các dạng bài tập thực hành. Trước mỗi chủ đề, tài liệu tổng hợp và tóm tắt những khái niệm quan trọng mà học sinh cần hiểu rõ, cung cấp hướng dẫn cụ thể cho việc giải các dạng bài tập phổ biến. Bên cạnh đó, tài liệu cũng chọn lọc và biên soạn các bài tập tự luyện từ các đề thi tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội. Đây thực sự là nguồn tài liệu hữu ích và chuẩn bị tốt cho học sinh chuẩn bị bước vào kỳ thi tuyển sinh quan trọng. Nhờ tài liệu của thầy Lê Văn Hưng, học sinh có thể tự tin hơn trong việc ôn luyện và đạt kết quả cao trong kỳ thi sắp tới.
Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi
Nội dung Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi Bản PDF - Nội dung bài viết Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Trên 98 trang tài liệu của tác giả Nguyễn Công Lợi, chúng ta được đưa vào thế giới của những bài toán bất đẳng thức phức tạp và thú vị. Tác giả không chỉ tuyển chọn những bài toán hay mà còn hướng dẫn chúng ta qua quá trình phân tích từng bước một để tìm ra lời giải cho chúng. Qua việc giải các bài toán này, chúng ta có cơ hội hiểu rõ hơn về cách phân tích các giả thiết và bất đẳng thức trong bài toán, từ đó đưa ra nhận định chính xác và hướng dẫn cho việc giải bài toán. Điều này không chỉ giúp chúng ta rèn luyện tư duy logic mà còn giúp chúng ta cải thiện kỹ năng giải quyết vấn đề. Tài liệu này không chỉ là một công cụ hữu ích để rèn luyện kiến thức mà còn là nguồn cảm hứng để chúng ta không ngừng trau dồi và phát triển khả năng tư duy toán học của mình. Đây thực sự là một tài liệu không thể thiếu đối với những ai đam mê toán học và mong muốn thách thức bản thân mình với những bài toán đầy tính chất khó khăn.