Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 cấp tỉnh năm 2023 - 2024 sở GDĐT Hà Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hà Nam : + Ba hộp chứa các viên bi giống nhau về kích thước. Hộp (I) chứa a viên bi màu đỏ và 2 viên bi màu xanh. Hộp (II) chứa b viên bi màu đỏ và 3 viên bi màu xanh. Hộp (III) chứa 6 viên bi màu đỏ và 4 viên bi màu xanh. Từ mỗi hộp lấy ra một viên bi. Biết xác suất lấy ra ít nhất một viên bi màu đỏ là 0,976 và xác suất lấy ra cả ba viên bi màu đỏ là 0,336. Tìm a, b và tính xác suất lấy được đúng hai viên bi màu đỏ. + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB CD), cạnh AB a 3 AD CD a. Tam giác SAB cân tại S SA a 2. Trên đoạn AD lấy điểm M. Mặt phẳng (α) đi qua điểm M và song song với hai đường thẳng SA AB. Mặt phẳng (α) cắt các cạnh BC SC SD theo thứ tự tại N PQ. Chứng minh tứ giác MNPQ là hình thang cân và tìm vị trí điểm M để MNPQ ngoại tiếp được đường tròn. + Gia đình bác An muốn làm mái tôn cho sân thượng là hình chữ nhật ABB A với kích thước chiều dài AA m 8 và chiều rộng AB m 5. Bác dự định làm mái tôn (kín) có thanh ngang CC m 6 nằm chính giữa mái, song song và cách mặt sàn sân thượng 1,4m (tham khảo hình vẽ). Biết rằng chi phí làm mái tôn trọn gói cho 2 1m là 250000 vnđ. Tính số tiền bác An phải chi trả (làm tròn đến hàng nghìn).

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 06 câu tự luận, thời gian làm bài 60 + 75 phút, có đáp án và hướng dẫn chấm điểm mã đề 498 499 500 501. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Một rạp hát có 20 hàng ghế xếp theo hình quạt. Hàng thứ nhất có 17 ghế, hàng thứ 2 có 20 ghế, hàng thứ ba có 23 ghế, … cứ tiếp tục cho đến hàng cuối cùng (hình vẽ). Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng mỗi vé xem có giá 200000 đồng? + Đường Vôn Kốc là một hình có tính chất toàn bộ hình “đồng dạng” với từng bộ phận của nó. Nó được xây dựng bằng phương pháp lặp như sau: Từ đoạn thẳng AB ban đầu, ta chia đoạn thẳng đó thành 3 phần bằng nhau AC CD DB, dựng tam giác đều CED rồi bỏ đi khoảng CD. Ta được đường gấp khúc ACEDB kí hiệu là K1. Lặp lại quy tắc đó cho các đoạn AC, CE, ED, DB ta được đường gấp khúc K2 (hình vẽ). Tiếp tục lặp lại quy tắc đó cho từng đoạn của K2 ta được đường gấp khúc K3 …. Lặp lại mãi quá trình đó ta được một đường gọi là đường Vôn Kốc. Giả sử đoạn thẳng ban đầu có độ dài a, tính độ dài đường gấp khúc K6. + Cho một đa giác lồi có 60 đỉnh. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một tứ giác có bốn cạnh là bốn đường chéo của của đa giác đó?
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Nguyễn Huệ - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Nguyễn Huệ, thành phố Tuy Hòa, tỉnh Phú Yên; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Nguyễn Huệ – Phú Yên : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy; cho tam giác ABC. Tâm đường tròn ngoại tiếp tam giác ABC có tọa độ là I(4;0), trọng tâm tam giác ABC có tọa độ là 11 3 3 G. Tìm tọa độ các đỉnh A, B, C của tam giác ABC biết rằng đỉnh B nằm trên đường thẳng d xy 2 1 0 và điểm M(4;2) là chân đường cao kẻ từ đỉnh B của tam giác ABC (M thuộc AC). + Cho a, b, c là các số thực thỏa mãn điều kiện: 222 abc 326. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức H a b c abc. + Xét các số thực dương abc thỏa mãn abc 2 3 20. Tìm giá trị nhỏ nhất của biểu thức: 394 2 L abc a bc.
Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2022 - 2023 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 11 chuyên đợt 2 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2022 – 2023 sở GD&ĐT Quảng Nam : + Chứng minh rằng nếu p là số nguyên tố có dạng pk k 4 3 thì không tồn tại p − 1 số tự nhiên liên tiếp sao cho có thể phân chia tập hợp các số đó thành hai tập hợp con rời nhau để tích tất cả các số thuộc tập hợp này bằng tích tất cả các số thuộc tập hợp kia. + Cho tam giác nhọn ABC (AB > AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt đường thẳng BC tại D, đường thẳng EF cắt đường thẳng BC tại K. Đường thẳng qua D song song với EF cắt hai đường thẳng AB, AC lần lượt tại M, N. Chứng minh bốn điểm M, O, N, K cùng nằm trên một đường tròn. + Tô màu tất cả các đỉnh của một đa giác lồi 10 đỉnh bằng hai màu xanh và đỏ (mỗi đỉnh một màu). Hỏi có bao nhiêu cách tô màu sao cho không có hai đỉnh liền kề nào của đa giác đó cùng màu đỏ?
Đề học sinh giỏi Toán 11 THPT năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi (HSG) môn Toán 11 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 211, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 11 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD vuông tại B và C có AB CD và CD BC. Đường tròn đường kính AB có phương trình 2 2 x y x 4 5 0 cắt cạnh AD của hình thang tại điểm thứ hai N. Gọi M là hình chiếu vuông góc của D trên đường thẳng AB. Biết điểm N có tung độ dương và đường thẳng MN có phương trình 3 3 0 x y đỉnh C a b. Giá trị của a b 2 bằng? + Một bao hạt giống gồm đậu xanh và đậu đỏ trong đó có 3 5 là hạt giống đậu xanh, 2 5 là hạt giống đậu đỏ. Do bao hạt giống này bị lỗi nên chỉ có 2 3 hạt giống đậu xanh nảy mầm và 3 4 hạt giống đậu đỏ nảy mầm. Lấy ngẫu nhiên trong bao 1 hạt giống và gieo thì thấy nó nảy mầm thành 1 cây đậu. Xác suất để cây đậu đó là cây đậu xanh bằng? + Giả sử CD h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A B trên mặt đất sao cho ba điểm A B C thẳng hàng. Ta đo được AB 24 m CAD CBD 63 48 (tham khảo hình vẽ). Chiều cao h của khối tháp gần nhất với giá trị nào sau đây?