Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận

Nội dung Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Chào quý thầy cô và các em học sinh lớp 8! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi học sinh giỏi huyện Toán lớp 8 năm học 2018 - 2019 do phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận tổ chức. 1. Bài toán đầu tiên yêu cầu chúng ta tìm giá trị của x sao cho biểu thức A = (x - 1)(x + 2)(x + 3)(x + 6) đạt giá trị nhỏ nhất. Để giải bài toán này, chúng ta cần áp dụng kiến thức về đạo hàm và điểm cực tiểu của hàm số. 2. Bài toán tiếp theo đưa ra hình bình hành ABCD với DC = 2AD, I là trung điểm của cạnh CD, HI vuông góc với AB tại H. Gọi E là giao điểm của AI và DH. Chúng ta cần chứng minh một số quy luật trong tam giác và hình học để giải quyết bài toán này. 3. Bài toán cuối cùng liên quan đến tam giác vuông ABC tại A, với AD là phân giác và BD = 14√3, CD = 3√17. Chúng ta cần tính độ dài các cạnh góc vuông của tam giác. Đây là bài toán yêu cầu chúng ta áp dụng kiến thức về phân giác trong tam giác và tính chất của tam giác vuông. Qua các bài toán trên, chúng ta sẽ học được nhiều kiến thức và kỹ năng mới trong môn Toán. Chúc quý thầy cô và các em học sinh có kỳ thi học sinh giỏi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC nhọn (AB AC) có đường cao AH và BK cắt nhau tại D. Gọi M là trung điểm của AB P là điểm đối xứng với H qua M. a) Chứng minh AHBP là hình vuông. b) Chứng minh HP MK 2 và BHD AHC. c) Qua D kẻ đường thẳng vuông góc với AH tại D, qua C kẻ đường thẳng vuông góc với BC tại C, hai đường thẳng này cắt nhau tại Q. Chứng minh P K Q thẳng hàng. + Tìm đa thức dư khi chia đa thức P x cho đa thức 2 x 1 biết đa thức P x chia cho x 1 được dư là 4 và khi chia cho 2 x 1 được dư là 3 5 x. Cho x y là các số thực thỏa mãn x y 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 C x y y x xy 4 4 8. + Lấy 2020 điểm thuộc miền trong của một tứ giác để cùng với 4 đỉnh ta được 2024 điểm, trong đó không có 3 điểm nào thẳng hàng. Biết diện tích của tứ giác ban đầu là 1 2 cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2024 điểm đã cho có diện tích không vượt quá 1 2 4042 cm.
Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Phúc Thọ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Phúc Thọ, huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Phúc Thọ – Nghệ An : + Cho a, b, c là các số nguyên thoả mãn 3 a b 2024c c. Chứng minh rằng: 333 abc chia hết cho 6. + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Cho các số nguyên dương a và b thoả mãn 2 2 S a b ab a b 3 2023 chia hết cho 5. Tìm số dư khi chia a – b cho 5.
Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 11 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho a, b, c là các số hữu tỷ thỏa mãn điều kiện ab + bc + ca = 1. Chứng minh rằng giá trị biểu thức Q = (a2 + 1)(b2 + 1)(c2 + 1) là bình phương của một số hữu tỷ. + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. Chứng minh rằng: P = (a − b)3 + (b − c)3 + (c − a)3 chia hết cho 81. + Cho hình chữ nhật ABCD có BDC = 30°. Qua C vẽ đường thẳng vuông góc với BD, cắt BD ở E và cắt tia phân giác của ADB ở M. a. Chứng minh rằng tứ giác AMBD là hình thang cân. b. Gọi N là hình chiếu của M trên DA, K là hình chiếu của M trên AB. Chứng minh rằng ba điểm N, K, E thẳng hàng.