Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề độ dài đường tròn, cung tròn

Nội dung Chuyên đề độ dài đường tròn, cung tròn Bản PDF - Nội dung bài viết Chuyên Đề Độ Dài Đường Tròn, Cung TrònTrọng Tâm Cơ Bản Cần ĐạtBài Tập và Các Dạng ToánBài Tập Cơ Bản Về NhàNâng Cao Phát Triển Tư DuyTrắc Nghiệm Rèn Luyện Phản XạPhiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Chuyên Đề Độ Dài Đường Tròn, Cung Tròn Tài liệu này bao gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân loại dạng bài tập tự luận và trắc nghiệm về chuyên đề độ dài đường tròn, cung tròn. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. Đây là những kiến thức cơ bản mà học sinh cần nắm vững: Trọng Tâm Cơ Bản Cần Đạt Tóm Tắt Lý Thuyết: Bao gồm công thức tính độ dài đường tròn (chu vi đường tròn) và cung tròn. Học sinh sẽ học cách tính toán chu vi đường tròn và độ dài cung tròn dựa trên bán kính và góc quay. Bài Tập và Các Dạng Toán Dạng 1: Học sinh sẽ được yêu cầu tính độ dài đường tròn và cung tròn bằng cách áp dụng công thức đã học trong phần lý thuyết. Dạng 2: Đây là một số bài toán tổng hợp đòi hỏi học sinh kết hợp kiến thức đã học để giải quyết. Bài Tập Cơ Bản Về Nhà Học sinh sẽ được giao bài tập cơ bản về nhà để đảm bảo họ nắm chắc kiến thức cơ bản. Nâng Cao Phát Triển Tư Duy Phần này sẽ giúp học sinh mở rộng kiến thức và phát triển tư duy toán học thông qua các bài toán mở rộng và ứng dụng kiến thức đã học. Trắc Nghiệm Rèn Luyện Phản Xạ Phần này hỗ trợ học sinh rèn luyện kỹ năng tư duy nhanh, phản xạ thông qua việc giải trắc nghiệm. Phiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Học sinh sẽ được cung cấp phiếu bài tập tự luyện để tự kiểm tra kiến thức cơ bản và nâng cao của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Tài liệu gồm 25 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường thẳng song song và đường thẳng cắt nhau, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. B. CÁC DẠNG MINH HỌA Dạng 1 : Xét vị trí tương đối của hai đường thẳng. Phương pháp giải: Cho hai đường thẳng: d: y = ax + b với a khác 0 và d’: y = a’x + b’ với a’ khác 0, khi đó ta có: 1. d và d’ song song khi và chỉ khi a = a’ và b khác b’. 2. d và d’ trùng nhau khi và chỉ khi a = a’ và b = b’. 3. d và d’ cắt nhau khi và chỉ khi a khác a’ . Đặc biệt d và d’ vuông góc với nhau khi và chỉ khi a.a’ = -1. Dạng 2 : Xác định phương trình đường thẳng. Phương pháp giải: Để xác định phương trình đường thẳng, ta thường làm như sau: Bước 1: Gọi d: y = ax + b là phương trình đường thẳng cần tìm (a và b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a và b từ đó đi đến kết luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm hệ số góc của đường thẳng. Phương pháp giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đừng thẳng và hệ số góc của đường thẳng. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Phương pháp giải: Để xác định góc giữa đường thẳng d và tia Ox, ta làm như sau: Cách 1. Vẽ d trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2. Gọi α là góc tạo bởi tia Ox và d. Ta có: + Nếu α < 90° thì a > 0 và a = tanα. + Nếu α > 90° thì a < 0 và a = -tan(180° – α). Dạng 3 : Xác định đường thẳng biết hệ số góc. Phương pháp giải: Gọi phương trình đường thẳng cần tìm là d: y = ax + b. Ta cần xác định a và b dựa vào các kiến thức về góc và hệ số góc. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề phương trình bậc nhất hai ẩn
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Phương trình bậc nhất hai ẩn. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Xác định nghiệm của phương trình bậc nhất hai ẩn. Dạng 2. Biện luận và vẽ đồ thị của hàm số bậc nhất. Dạng 3. Tìm nghiệm nguyên của phương trình bậc nhất hai ẩn. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN Xem thêm : Chuyên đề hệ phương trình bậc nhất hai ẩn
Chuyên đề hàm số bậc nhất
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hàm số bậc nhất, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. A. TÓM TẮT LÝ THUYẾT 1. Hàm số bậc nhất. Là hàm số được cho bởi công thức y = ax + b trong đó a, b là hai số đã cho và a khác 0. 2. Các tính chất của hàm số bậc nhất. Hàm số bậc nhất xác định với mọi giá trị của x thuộc R. Hàm số bậc nhất: Đồng biến trên R khi a > 0; Nghịch biến trên R khi a < 0. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Tính giá trị của hàm số tại một điểm. + Việc tính toán theo kiểu này sẽ giúp ta xác định được toạ độ của nhiều điểm thuộc đồ thị hàm số một cách nhanh chóng. Ngoài ra, phương pháp sử dụng kết hợp máy tính cầm tay (sử dụng Slove) sẽ giúp cải thiện thời gian một cách hiệu quả. + Tính giá trị của hàm số y = f(x) khi cho giá trị của ẩn x0 là ta thay giá trị của x0 vào biểu thức y = f(x) để tìm được y = f(x0). Dạng 2: Vẽ đồ thị hàm bậc nhất. Theo các bước vẽ đã học. Dạng 3: Nhận dạng hàm số bậc nhất. Dựa vào định nghĩa hàm số bậc nhất. Dạng 4: Xét tính đông biến và nghịch biến của hàm số bậc nhất. Xét hàm số bậc nhất y = ax + b với a, b là hằng số: Khi a > 0, hàm số đồng biến trên R; khi a < 0, hàm số nghịch biến trên R. Dạng 5. Toán thực tế. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN Dạng 1. Nhận biết về khái niệm hàm số. Dạng 2. Tính giá trị của hàm số, giá trị của biến số. Dạng 3. Tìm điều kiện xác định của hàm số. Dạng 4. Đồ thị hàm số. Xem thêm : + Chuyên đề hàm số bậc nhất và các bài toán liên quan + Tài liệu học tập Toán 9 chủ đề hàm số bậc nhất – Trần Quốc Nghĩa + 123 bài toán hàm số bậc nhất và đường thẳng – Lương Tuấn Đức