Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Phúc Trạch - Hà Tĩnh

Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2019 môn Toán, vừa qua, trường THPT Phúc Trạch (Phúc Trạch, Hương Khê, Hà Tĩnh) đã tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần thứ 2 dành cho toàn bộ học sinh khối 12 của trường, kỳ thi giúp các em tiếp tục rèn luyện, kiểm nghiệm các kiến thức Toán THPT mà các em đã được học. Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Phúc Trạch – Hà Tĩnh có mã đề 003 gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án lựa chọn A, B, C, D, học sinh làm bài thi trong 90 phút, đề thi có đáp án. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Phúc Trạch – Hà Tĩnh : + Khi sản xuất hộp mì tôm các nhà sản xuất luôn để một khoảng trống dưới đáy hộp. Hình vẽ dưới mô tả cấu trúc của hộp mì tôm. Thớ mì tôm có dạng hình trụ, hộp mì có dạng hình nón cụt được cắt ra bởi hình nón có chiều cao 9cm và bán kính đáy 6cm. Nhà sản xuất tìm cách sao cho thớ mì tôm có được thể tích lớn nhất vì mục đích thu hút khách hàng. Tìm thể tích lớn nhất đó. [ads] + Một trang trại rau sạch mỗi ngày thu hoạch được một tấn rau. Mỗi ngày, nếu bán rau với giá 30000 đồng/kg thì hết sạch rau, nếu giá bán cứ tăng thêm 1000 đồng/kg thì số rau thừa lại tăng thêm 20kg. Số rau thừa này được thu mua làm thức ăn chăn nuôi với giá 2000 đồng/kg. Hỏi số tiền bán rau nhiều nhất mà trang trại có thể thu được mỗi ngày là bao nhiêu? + Giải bóng chuyền quốc tế VTV Cup có 12 đội tham gia, trong đó có 3 đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành 3 bảng đấu, mỗi bảng 4 đội. Tính xác suất để 3 đội của Việt Nam cùng nằm ở một bảng đấu.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 THPT năm 2020 - 2021 lần 1 sở GDĐT Hà Nội
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2021 môn Toán, tối thứ Sáu ngày 28 tháng 05 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 THPT năm học 2020 – 2021 lần thứ nhất; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online). Đề khảo sát chất lượng Toán 12 THPT năm 2020 – 2021 lần 1 sở GD&ĐT Hà Nội gồm 50 câu trắc nghiệm, thời gian làm bài 90 phút; đáp án và điểm số bài thi được công bố ngay sau khi thí sinh hoàn tất bài thi.
20 đề ôn thi tốt nghiệp THPT 2021 môn Toán dành cho học sinh TB - Yếu
Tài liệu gồm 320 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập 20 đề thi thử ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021 (có đáp án và lời giải chi tiết) dành cho đối tượng học sinh có học lực trung bình – yếu. Trích dẫn tài liệu 20 đề ôn thi tốt nghiệp THPT 2021 môn Toán dành cho học sinh TB – Yếu: + Ta biết rằng mỗi cách chọn ra 2 số bất kỳ từ tập X luôn có tổng hoặc là một số dương hoặc là một số âm hoặc bằng 0. Mà ta có tập X đối xứng nên xác suất để lấy được hai số có tổng dương sẽ luôn bằng xác suất lấy được hai số có tổng âm. Gọi B là biến cố “Hai số lấy được có tổng bằng 0”. Ta có B n B 1 1 2 2 3 3 4 4 4. Xác suất của biến cố B là: 4 1 28 7 n B p B n. Suy ra xác suất của biến cố A là: 1 3 2 7 p B p A. + Cho hàm số 4 2 y ax bx c a 0 có đồ thị như hình bên. Xác định dấu của a b c. Lời giải: Dựa vào hình dáng đồ thị ta có a 0. Đồ thị hàm số có ba điểm cực trị suy ra a b trái dấu mà a 0 suy ra b 0. Đồ thị cắt trục tung tại điểm có tung độ âm, suy ra c 0. + Hàm số nào sau đây có đồ thị như hình vẽ? Lời giải: Từ đồ thị, ta suy ra hàm số cần tìm là hàm bậc ba có hệ số của 3 x là số dương. Hàm số 3 y x x f x 1 có 2 y x x 3 1 0, nên hàm số f x không có cực trị. Ta loại đáp án này. Xét hàm số 3 2 y x x x 2 1. Ta có 2 y x x 3 4 1; 1 0 1 3 y x x. Suy ra hàm số có 2 cực trị. Và đồ thị hàm số qua điểm 0 1. Vậy đáp án đúng là 3 2 y x x x 2 1.
Đề khảo sát chất lượng Toán 12 cuối năm học 2020 - 2021 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng Toán 12 cuối năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Hà Nam; kỳ thi nhằm kiểm tra chất lượng học tập của học sinh lớp 12 trước khi các em bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề khảo sát chất lượng Toán 12 cuối năm học 2020 – 2021 sở GD&ĐT Hà Nam : + Trong không gian Oxyz, cho hình thoi ABCD có diện tích bằng 12 2. Biết A nằm trên trục Oz, C nằm trong mặt phẳng Oxy, hai điểm B và D nằm trên đường thẳng 1 1 1 2 x y z d trong đó B có hoành độ dương. Điểm D có tọa độ là? + Cho đồ thị 4 2 C y x x m 4, biết C cắt trục hoành tại 4 điểm phân biệt. Gọi 1 2 S S lần lượt là diện tích các hình phẳng 1 2 H H giới hạn bởi C và trục hoành trong đó H1 là phần phía trên, H2 là phần phía dưới trục hoành. Tính m khi 1 2. + Cho số thực a 0, biết rằng phương trình 3 2 ax x x 12 15 2021 0 có ba nghiệm thực phân biệt. Số nghiệm thực của phương trình 2 3 2 2 4 12 15 2021 3 12 3 24 15 ax x x ax ax x là?
Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường THPT Thăng Long - Hà Nội
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, ngày 19 tháng 05 năm 2021, trường THPT Thăng Long, quận Hai Bà Trưng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai; kỳ thi được tổ chức theo hình thức thi trực tuyến (online). Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT Thăng Long – Hà Nội được biên soạn bám sát cấu trúc đề tham khảo TN THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án và lời giải chi tiết VD – VDC mã đề 184, 348, 552, 774. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT Thăng Long – Hà Nội : + Trong không gian hệ trục tọa độ Oxyz, cho mặt cầu 2 2 2 64 1 2 2 9 S x y z. Trên tia Ox Oy Oz lần lượt lấy các điểm A B C thỏa mãn 1 2 2 9 OA OB OC. Biết mặt phẳng ABC tiếp xúc với mặt cầu S. Thể tích khối chóp OABC là? + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A và B. Gọi là đường thẳng đi qua điểm M sao cho tổng khoảng cách từ hai điểm A và B đến đường thẳng là lớn nhất. Đường thẳng có một vectơ chỉ phương là u a b. Khi đó 2a b bằng? + Trong mặt phẳng tọa độ, các điểm A và B trong hình vẽ dưới đây lần lượt là điểm biểu diễn của các số phức 1 z và 2 z. Modul của số phức 1 2 z z bằng?