Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Tam Dương - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho đoạn thẳng BC cố định, M là trung điểm của đoạn thẳng BC. Vẽ góc CBx sao cho CBx, trên tia Bx lấy điểm A sao cho độ dài đoạn thẳng BM và BA tỉ lệ với 1 và 2. Lấy điểm D bất kì thuộc đoạn thẳng BM. Gọi H và I lần lượt là hình chiếu của B và C trên đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) BH2 + CI2 có giá trị không đổi khi D di chuyển trên đoạn thẳng BM. c) Tia phân giác của góc HIC luôn đi qua một điểm cố định. + Trong một bảng ô vuông gồm có 5×5 ô vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0 hoặc -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau. + Cho đa thức f(x) = 2016.×4 – 32(25.k + 2).x2 + k2 – 100 (với k là số thực dương cho trước). Biết đa thức f(x) có đúng ba nghiệm phân biệt a, b, c (với a < b < c). Tính hiệu của a – c.

Nguồn: toanmath.com

Đọc Sách

Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Hiệp Hòa - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 03 năm 2023. Trích dẫn Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Hiệp Hòa – Bắc Giang : + Cho p là tích của 2023 số nguyên tố đầu tiên. Chứng minh rằng p – 1 và p + 1 không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên các cạnh AB, AC lần lượt lấy điểm D và E sao cho AD = AE. Qua A và D kẻ đường thẳng vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt tia CA tại I. a) Chứng minh DI = BE b) Qua N kẻ đường thẳng song song với AC cắt AM tại F. Chứng minh NF = AI. c) Chứng minh AM = 1/2.NI. + Cho tam giác ABC có AB < AC < BC. Điểm E nằm trong tam giác. Chứng minh EA + EB + EC < AC + BC.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hưng Hà - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hưng Hà, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hưng Hà – Thái Bình : + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s, trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông là bao nhiêu, biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Tìm giá trị nhỏ nhất của biểu thức D = 2022/(2023 – |x – 2024|) với x thuộc Z. + Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt các tia AB tại E và tia AC tại F. Vẽ tia BM song song với EF (M thuộc AC). a) Chứng minh: tam giác ABM cân. b) Chứng minh: BE = CF = MF. c) Qua D kẻ đường thẳng vuông góc với BC cắt tia AH tại I. Chứng minh: IF vuông góc AC.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 25 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho x, y là các số nguyên thoả mãn. Tính giá trị biểu thức P = (3x + 4y – 5)^2022. + Cho x, y thuộc N* và p là số nguyên tố thoả mãn: x2 + xy = 2x + 2y + p2. Chứng minh rằng: y = p2 – 3. + Cho tam giác ABC có góc A = 60°. Tia phân giác của góc B cắt AC tại D và tia phân giác của góc C cắt AB tại E; BD và CE cắt nhau tại I. a) Tính số đo góc BIC b) Trên cạnh BC lấy điểm F sao cho BF = BE. Chứng ming rằng: FI = DI. c) Trên tia IF lấy điểm K sao cho IK = IB. Vẽ tam giác BCH đều (H và A khác phía với đường thẳng BC). Chứng minh ba điểm I, K, H thẳng hàng.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Chương Mỹ – Hà Nội : + Cho biểu thức f(x) = ax2 + bx + c, biết rằng giá trị của biểu thức f(x) tại x = 0, x = 1, x = -1 lần lượt bằng 2023; 2027 và 2025. Tính giá trị của biểu thức f(x) tại x = 2. + Ba phân số có tổng bằng 213/70, các tử của chúng tỉ lệ với 3; 4; 5. Các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó. + Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D (không trùng với B, C), trên tia đối của tia CB lấy điểm E sao cho BD = CE, các đường thẳng vuông góc với BC kẻ từ D và E theo thứ tự cắt các đường thẳng AB, AC lần lượt tại M và N. 1) Chứng minh rằng: DM = EN; 2) Đường thẳng BC cắt MN tại I. Chứng minh I là trung điểm của đoạn thẳng MN; 3) So sánh chu vi của tam giác ABC và chu vi của tam giác AMN; 4) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC.