Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Phạm Hùng Hải

Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày lý thuyết cần nhớ, các dạng toán thường gặp và bài tập tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit (Toán 12 phần Giải tích chương 2). MỤC LỤC : Chương 2 . HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. §1 – LŨY THỪA 1. A LÝ THUYẾT CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Tính giá trị biểu thức 2. + Dạng 2. Rút gọn biểu thức liên quan đến lũy thừa 3. + Dạng 3. So sánh hai lũy thừa 4. C BÀI TẬP TỰ LUYỆN 6. §2 – HÀM SỐ LŨY THỪA 9. A LÝ THUYẾT CẦN NHỚ 9. B CÁC DẠNG TOÁN THƯỜNG GẶP 9. + Dạng 1. Tìm tập xác định của hàm số lũy thừa 9. + Dạng 2. Tìm đạo hàm của hàm số lũy thừa 12. + Dạng 3. Đồ thị của hàm số lũy thừa 14. C BÀI TẬP TỰ LUYỆN 15. §3 – LÔGARIT 18. A LÝ THUYẾT CẦN NHỚ 18. B CÁC DẠNG TOÁN CƠ BẢN 19. + Dạng 1. So sánh hai lôgarit 19. + Dạng 2. Công thức, tính toán lôgarit 20. + Dạng 3. Phân tích biểu thức lôgarit theo các lo-ga-rit cho trước 22. + Dạng 4. Xác định một số nguyên dương có bao nhiêu chữ số 23. + Dạng 5. Tổng hợp biến đổi lôgarit nâng cao 24. C BÀI TẬP TỰ LUYỆN 29. §4 – HÀM SỐ MŨ, HÀM SỐ LÔGARIT 34. A LÝ THUYẾT CẦN NHỚ 34. B CÁC DẠNG TOÁN CƠ BẢN 36. + Dạng 1. Tìm tập xác định 36. + Dạng 2. Tính đạo hàm 38. + Dạng 3. Giá trị lớn nhất và giá trị nhỏ nhất 41. + Dạng 4.Các bài toán liên quan đến đồ thị 42. C BÀI TẬP TỰ LUYỆN 46. §5 – PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT CƠ BẢN 49. A LÝ THUYẾT CẦN NHỚ 49. B CÁC DẠNG TOÁN THƯỜNG GẶP 50. + Dạng 1. Giải phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 50. + Dạng 2. Giải phương trình mũ bằng phương pháp đặt ẩn phụ 52. + Dạng 3. Giải phương trình mũ bằng phương pháp lôgarít hóa 54. + Dạng 4. Giải phương trình lôgarit cơ bản, phương pháp đưa về cùng cơ số 55. + Dạng 5. Giải phương trình lôgarít bằng phương pháp đặt ẩn phụ 57. + Dạng 6. Giải phương trình mũ và lôgarít bằng phương pháp hàm số 59. C BÀI TẬP TỰ LUYỆN 63. §6 – BẤT PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH LOGARIT CƠ BẢN 68. A LÝ THUYẾT CẦN NHỚ 68. B CÁC DẠNG TOÁN THƯỜNG GẶP 69. + Dạng 1. Giải bất phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 69. + Dạng 2. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ 72. + Dạng 3. Giải bất phương trình logarit cơ bản, phương pháp đưa về cùng cơ số 74. + Dạng 4. Giải bất phương trình lôgarit bằng phương pháp đặt ẩn phụ 76. + Dạng 5. Bài toán lãi kép 77. C BÀI TẬP TỰ LUYỆN 80. §7 – PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ, LOGARIT CÓ CHỨA THAM SỐ 83. A CÁC DẠNG TOÁN THƯỜNG GẶP 83. + Dạng 1. Phương trình có nghiệm đẹp – Định lý Vi-ét 83. + Dạng 2. Phương trình không có nghiệm đẹp – Phương pháp hàm số 88. + Dạng 3. Bất phương trình – Phương pháp hàm số 92. B BÀI TẬP TỰ LUYỆN 96. §8 – ĐỀ TỔNG ÔN 99. A ĐỀ SỐ 1 99. Bảng đáp án 102. B ĐỀ SỐ 2 103. Bảng đáp án 105.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng phương pháp hàm số giải phương trình mũ và logarit
Tài liệu gồm 35 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn ứng dụng phương pháp hàm số giải phương trình mũ và logarit, được phát triển dựa trên câu 47 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu ứng dụng phương pháp hàm số giải phương trình mũ và logarit: A. KIẾN THỨC CẦN NHỚ B. BÀI TẬP MẪU 1. Đề bài : Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $0 \le x \le 2020$ và ${\log _3}(3x + 3) + x = 2y + {9^y}$? 2. Phân tích hướng dẫn giải a. Dạng toán: Ứng dụng tính đơn điệu của hàm số để giải phương trình mũ, logarit. b. Phương pháp: Tìm hàm đặc trưng của bài toán, đưa phương trình về dạng $f(u) = f(v).$ c. Hướng giải: Bước 1: Đưa phương trình đã cho về dạng $f(u) = f(v).$ Bước 2: + Xét hàm số $y = f(t)$ trên miền $D.$ + Tính $y’$ và xét dấu $y’.$ + Kết luận tính đơn điệu của hàm số $y = f(t)$ trên $D.$ Bước 3: Tìm mối liên hệ giữa $x$ và $y$ rồi tìm các cặp số $(x;y)$ rồi kết luận. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình mũ dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ: A. KIẾN THỨC CƠ BẢN 1. Phương trình mũ cơ bản ${a^x} = b$ ($a > 0$, $a \ne 1$). + Phương trình có một nghiệm duy nhất khi $b > 0.$ + Phương trình vô nghiệm khi $b \le 0.$ 2. Giải phương trình mũ bằng phương pháp biến đổi, quy về cùng cơ số. 3. Giải phương trình mũ bằng phương pháp đặt ẩn phụ. 4. Giải phương trình mũ bằng phương pháp logarit hóa. 5. Giải phương trình mũ bằng phương pháp đồ thị. 6. Giải phương trình mũ bằng phương pháp sử dụng tính đơn điệu của hàm số. 7. Giải phương trình mũ bằng phương pháp đánh giá. 8. Giải bất phương trình mũ: Ta cũng thường sử dụng các phương pháp giải tương tự như đối với phương trình mũ. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa. + Phương trình lôgarit là phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. + Bất phương trình lôgarit là bất phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. 2. Phương trình vàbất phương trình lôgarit cơ bản. + Phương trình lôgarit cơ bản có dạng ${\log _a}f(x) = b.$ + Bất phương trình lôgarit cơ bản có dạng: ${\log _a}f(x) > b$; ${\log _a}f(x) \ge b$; ${\log _a}f(x) < b$; ${\log _a}f(x) \le b.$ 3. Phương pháp giải phương trình và bất phương trình lôgarit: Đưa về cùng cơ số, Đặt ẩn phụ, Mũ hóa. B. KỸ NĂNG CƠ BẢN 1. Điều kiện xác định của phương trình lôgarit. 2. Kiểm tra xem giá trị nào là nghiệm của phương trình lôgarit. 3. Tìm tập nghiệm của phương trình lôgarit. 4. Tìm số nghiệm của phương trình lôgarit. 5. Tìm nghiệm lớn nhất, hay nhỏ nhất của phương trình lôgarit. 6. Tìm mối quan hệ giữa các nghiệm của phương trình lôgarit: tổng, hiệu, tích, thương …. 7. Cho một phương trình lôgarit, nếu đặt ẩn phụ thì thu được phương trình nào (ẩn t). 8. Tìm điều kiện của tham số $m$ để phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. 9. Điều kiện xác định của bất phương trình lôgarit. 10. Tìm tập nghiệm của bất phương trình lôgarit. 11. Tìm nghiệm nguyên (tự nhiên) lớn nhất, nguyên (tự nhiên) nhỏ nhất của bất phương trình lôgarit. 12. Tìm điều kiện của tham số $m$ để bất phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. C. BÀI TẬP TRẮC NGHIỆM D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu lũy thừa và hàm số lũy thừa dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa: A. LÝ THUYẾT SÁCH GIÁO KHOA I. LŨY THỪA 1. Lũy thừa số mũ nguyên dương. 2. Lũy thừa số mũ 0 – Lũy thừa số mũ nguyên âm. 3. Lũy thừa số mũ hữu tỷ. 4. Lũy thừa số thực. 5. Tính chất của lũy thừa số mũ nguyên. 6. Công thức lãi kép. II. HÀM SỐ LŨY THỪA 1. Định nghĩa hàm số lũy thừa. 2. Tập xác định hàm số lũy thừa. 3. Đạo hàm hàm số lũy thừa. 4. Tính chất của hàm số lũy thừa. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM