Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 - 2019 sở GDĐT Hưng Yên

giới thiệu đến thầy, cô và các em nội dung đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên, đề gồm 01 trang với 06 bài toán tự luận, học sinh làm bài thi trong thời gian 180 phút, kỳ thi nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán THPT đang học tập tại các trường THPT tại tỉnh Hưng Yên để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Hưng Yên tham dự kỳ thi HSG Toán THPT cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên : + Cho hàm số y = x^4 – mx^2 + 2m – 2 (C) với m là tham số. Gọi A là một điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm các giá trị của m để tiếp tuyến của đồ thị (C) tại A cắt đường tròn (T): x^2 + y^2 = 4 tại hai điểm phân biệt tạo thành một dây cung có độ dài nhỏ nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a và góc ABC = 60 độ. Gọi E, F lần lượt là trung điểm của các cạnh SC, SD. Biết SA = SC = SD và mặt phẳng (ABEF) vuông góc với mặt bên (SCD), tính thể tích khối chóp S.ABCD theo a. + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + cx + 1 với a, b, c là số thực không âm. Biết rằng f(x) = 0 có 4 nghiệm thực, chứng minh f(2018) = 2019^4.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 12 năm 2023 - 2024 trường THPT Yên Phong 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2023 – 2024 trường THPT Yên Phong số 2, tỉnh Bắc Ninh; đề thi hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề), có đáp án mã đề 001 002 003 004 005 006. Trích dẫn Đề học sinh giỏi Toán 12 năm 2023 – 2024 trường THPT Yên Phong 2 – Bắc Ninh : + Một cốc nước có dạng hình trụ đựng nước, chiều cao 12 cm, đường kính đáy 4 cm, lượng nước trong cốc cao 8 cm. Thả vào cốc nước 4 viên bi có cùng đường kính 2 cm. Hỏi nước dâng cao cách mép cốc bao nhiêu cm? (làm tròn sau dấu phẩy hai chữ số thập phân, bỏ qua độ dày của cốc). + Một hòn đảo ở vị trí C cách bờ biển d một khoảng BC = 4km. Trên bờ biển d người ta xây một nhà máy điện tại vị trí A. Để kéo đường dây điện ra ngoài đảo, người ta đặt một trụ điện ở vị trí S trên bờ biển (như hình vẽ). Biết rằng khoảng cách từ B đến A là 16km, chi phí để lắp đặt mỗi km dây điện dưới nước là 20 triệu đồng và lắp đặt ở đất liền là 12 triệu đồng. Hỏi trụ điện cách nhà máy điện một khoảng bao nhiêu để chi phí lắp đặt thấp nhất? + Cho ba hình tam giác đều cạnh bằng a chồng lên nhau như hình vẽ (cạnh đáy của tam giác trên đi qua các trung điểm hai cạnh bên của tam gác dưới). Tính theo a thể tích của khối tròn xoay tạo thành khi quay chúng xung quanh đường thẳng d.
Đề học sinh giỏi tỉnh Toán THPT năm 2023 - 2024 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa (mã đề GỐC); đề thi gồm 08 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng toạ độ Oxy, trên tia Ox lấy 12 điểm phân biệt (khác O) là 1 2 12 A A và trên tia Oy lấy 12 điểm phân biệt (khác O) là 1 2 12 B B thỏa mãn (đơn vị). Chọn ngẫu nhiên một tam giác có 3 đỉnh nằm trong 24 điểm. Xác suất để tam giác chọn được có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy là? + Cho hình chóp S.ABCD có đáy ABCD là hình thang AB CD CD AB. Gọi M là điểm di động trên cạnh AB (M A M B) và N là trung điểm của cạnh SD. Mặt phẳng đi qua M N và song song với AD chia khối chóp thành hai khối đa diện có tỉ lệ thể tích 1 2 1 3 V V trong đó V1 là thể tích khối đa diện chứa đỉnh A V2 là thể tích khối đa diện chứa đỉnh B. Khi đó tỉ số MA m CD n trong đó: m và n là các số nguyên dương, m n là phân số tối giản. Tổng m n bằng? + Một lớp học có 20 học sinh nam và 26 học sinh nữ. Giáo viên chủ nhiệm cần chọn 3 học sinh làm ban cán sự lớp gồm 1 lớp trưởng, 1 lớp phó học tập và 1 lớp phó văn thể. Hỏi có bao nhiêu cách chọn sao cho trong ban cán sự đó có ít nhất một học sinh nam?
Đề học sinh giỏi tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 05 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Quảng Bình : + Tìm tất cả các giá trị của tham số m để đường thẳng d y x m cắt đồ thị C của hàm số 2 1 1 x y x tại hai điểm phân biệt A B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Tìm tất cả các giá trị của tham số m để đồ thị hàm số 3 2 y x mx 3 1 có hai điểm cực trị A và B sao cho tam giác ABE có diện tích bằng 4, với tọa độ điểm E(2;1). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Gọi M là trung điểm cạnh AB và điểm N thuộc cạnh AD sao cho AD AN 4. Biết SA a MN vuông góc với SM và tam giác SMC cân tại S. a) Tính thể tích của khối chóp S.CMN theo a. b) Tính khoảng cách giữa hai đường thẳng SA và MC theo a.
Đề học sinh giỏi Toán 12 năm 2023 - 2024 trường chuyên Lê Hồng Phong - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 20 câu viết đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Cho hàm đa thức y fx y gx có đồ thị là hai đường cong ở hình bên dưới. Biết rằng đồ thị hàm số y gx có đúng một điểm cực trị A, đồ thị y fx có đúng một điểm cực trị B và AB = 4 (AB vuông góc trục Ox). Tính tổng tất cả các giá trị nguyên của tham số m để hàm số y f x gx m có số điểm cực trị lớn nhất. + Chọn ngẫu nhiên bốn số tự nhiên khác nhau từ 70 số nguyên dương đầu tiên. Tính xác suất để bốn số được chọn lập thành một cấp số nhân có công bội nguyên. + Cho tập A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác có độ dài ba cạnh phân biệt bằng?