Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và logarit - Bùi Trần Duy Tuấn

Chuyên đề lũy thừa, mũ và logarit do thầy Bùi Trần Duy Tuấn biên soạn nhằm làm tư liệu cho các em lớp 12 ôn thi kỳ thi THPT Quốc gia tham khảo, giúp các em ôn lại kiến thức nhanh chóng và hiệu quả hơn. Tài liệu gồm 341 trang tuyển tập kiến thức, dạng toán, thủ thuật Casio và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề lũy thừa, mũ và logarit trong chương trình Giải tích 12 chương 2. Chủ đề 1 . Lũy thừa  A. Kiến thức cần nắm I. Lũy thừa II. Căn bậc n B. Một số dạng toán liên quan về lũy thừa I. Viết lũy thừa với dạng số mũ hữu tỉ II. Tính giá trị của biểu thức III. Rút gọn biểu thức IV. So sánh các số C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm  Chủ đề 2 . Logarit A. Kiến thức cơ bản B. Một số dạng toán về logarit  I. Tính, rút gọn giá trị của một biểu thức chứa logarit II. Biểu diễn một logarit theo các logarit cho trước C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm Chủ đề 3 . Hàm số lũy thừa – mũ – logarit A. Kiến thức cần nắm I. Hàm lũy thừa II. Hàm số mũ III. Hàm số logarit B. Một số dạng toán thường gặp I. Tìm tập xác định của hàm số II. Tính đạo hàm của hàm số III. Tính đơn điệu của hàm số IV. Đồ thị của hàm số V. Tính giá trị biểu thức C. Bài tập trắc nghiệm [ads] Chủ đề 4 . Phương trình, hệ phương trình mũ – logarit A. Các phương pháp giải phương trình mũ và logarit I. Phương pháp đưa về cùng cơ số giải phương trình mũ và logarit II. Phương pháp đặt ẩn phụ giải phương trình mũ và logarit III. Phương pháp logarit hóa giải phương trình mũ và logarit IV. Phương pháp hàm số để giải phương trình mũ và logarit V. Phương trình chứa tham số B. Hệ phương trình mũ và logarit I. Phương pháp thế II. Phương pháp biến đổi tương đương III. Phương pháp đặt ẩn phụ IV. Phương pháp hàm số C. Thủ thuật casio giải phương trình mũ – logarit  I. Phương pháp sử dụng shift solve II. Phương pháp Calc III. Phương pháp sử dụng mode 7 D. Bài tập trắc nghiệm Chủ đề 5 . Bất phương trình mũ – logarit A. Phương pháp giải bất phương trình mũ và loagrit I. Phương pháp biến đổi tương đương cho bất phương trình mũ II. Phương pháp biến đổi tương đương cho bất phương trình logarit III. Phương pháp đặt ẩn phụ giải bất phương trình mũ và loagrit IV. Phương pháp logarit hóa giải bất phương trình mũ và logarit V. Phương pháp sử dụng tính chất của hàm số để giải bất phương trình mũ và logarit VI. Bất phương trình chứa tham số B. Thủ thuật casio giải bất phương trình mũ và loagrit I. Phương pháp 1. Calc theo chiều thuận II. Phương pháp 2 . Calc theo chiều nghịch III. Phương pháp 3. Lập bảng giá trị mode 7 IV. Phương pháp 4. Lược đồ con rắn C. Bài tập trắc nghiệm Chủ đề 6 . Các bài toán ứng dụng của hàm số mũ – logarit A. Các dạng toán ứng dụng của hàm số lũy thừa – mũ – logarit Một số khái niệm liên quan đến bài toán ngân hàng I. Lãi đơn 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ, tìm vốn ban đầu II. Lãi kép 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ. Tìm vốn ban đầu III. Bài toán vay trả góp – góp vốn IV. Bài toán lãi kép liên tục – công thức tăng trưởng mũ – ứng dụng Trong lĩnh vực đời sống xã hội 1. Bài toán lãi kép liên tục 2. Bài toán về dân số V. Ứng dụng trong lĩnh vực khoa học kỹ thuật B. Bài tập trắc nghiệm Xem thêm chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn: + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn

Nguồn: toanmath.com

Đọc Sách

32 bài toán phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Giải tích chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số: + Cho phương trình 4 10 2 16 3 0 x x x m với m là tham số thực. Có bao nhiêu số nguyên m để phương trình có hai nghiệm thực phân biệt? + Gọi S là tập hợp nghiệm nguyên của bất phương trình 2 2 2 2 2 log 2 2 log 2 log x mx mx x. Có bao nhiêu giá trị nguyên của tham số m để tập hợp S có đúng 8 phần tử? + Cho hàm số bậc 4 có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m và m 2021 2021 để phương trình 3 2 log f x x f x mx mx f x mx có hai nghiệm phân biệt dương? + Có bao nhiêu giá trị nguyên của tham số a thuộc 20 20 để bất phương trình 2 3 3 3 log log 1 0 x a x a có không quá 20 nghiệm nguyên? + Cho phương trình 3 2020 log 2021 x a x với a là số thực dương. Biết tích các nghiệm của phương trình là 32. Mệnh đề nào sau đây là đúng?
Phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT - BPT mũ và lôgarit
Tài liệu gồm 45 trang, được tổng hợp bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp đánh giá và sử dụng tính đơn điệu của hàm số để giải phương trình và bất phương trình mũ và lôgarit, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT – BPT mũ và lôgarit: + THPT GIA LỘC – HẢI DƯƠNG NĂM 2018 – 2019 LẦN 02: Cho hai số thực a b thỏa mãn 100 40 16 4 log log log12 a b a b. Giá trị của a b bằng? + THPT CHUYÊN BẮC GIANG NĂM 2018 – 2019 LẦN 01: Phương trình 2 3 5 6 2 5 x x x có một nghiệm dạng loga x b b với ab là các số nguyên dương thuộc khoảng 1 7. Khi đó a b 2 bằng? + THPT YÊN ĐỊNH – THANH HÓA 2018 2019 LẦN 2: Cho xy là hai số thực không âm thỏa mãn 2 2 2 1 2 1 log 1 y x x y x. Giá trị nhỏ nhất của biểu thức 2 1 2 4 2 1 x P e x y là? + THPT CHUYÊN THÁI BÌNH NĂM 2018 – 2019 LẦN 04: Cho các số thực x y với x 0 thỏa mãn e e e e 3 1 1 3 1 1 1 3 x y xy xy x y x y y. Gọi m là giá trị nhỏ nhất của biểu thức T x y 2 1. Mệnh đề nào sau đây đúng? + THPT CHUYÊN VĨNH PHÚC LẦN 02 NĂM 2018 – 2019: Biết rằng phương trình e e 2cos x x ax a là tham số có 3 nghiệm thực phân biệt. Hỏi phương trình e e 2cos 4 x x ax có bao nhiêu nghiệm thực phân biệt?
Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số
Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?
Tìm điều kiện của x để bất phương trình mũ - lôgarit đúng với y thỏa mãn điều kiện
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm điều kiện của x để bất phương trình mũ – lôgarit đúng với y thỏa mãn điều kiện cho trước; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng f a f b f a f b f a f b f a f b. Bước 2 : Xét hàm số y f x chứng minh hàm số luôn đồng biến, hoặc luôn nghịch biến Bước 3 : Do tính chất đồng biến hoặc nghịch biến của hàm số f a f b a b nếu hàm số đồng biến f a f b a b nếu hàm số nghịch biến. Cho các số nguyên dương x y không lớn hơn 4022. Biết mỗi giá trị của y luôn có ít nhất 2021 giá trị của x thỏa mãn bất phương trình 2 2 3 3 log 3 3 x y y x y xx y. Hỏi có bao nhiêu giá trị của y? Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y bất phương trình log 11 log 0 3 3 x x y x có nghiệm nguyên x và có không quá 10 số nguyên x thỏa mãn? Cho các số x y a thoả mãn 1 2048 1 x y a và 1 2 2 log 1 2 2 1 x a a x xy x y x a y a. Có bao nhiêu giá trị của a 100 để luôn có 2048 cặp số nguyên x y? Gọi S là tập tất cả các giá trị nguyên của y để bất phương trình 2 3 2 2 2 log 3 3 log 3 log y xy xy y. Có bao nhiêu giá trị nguyên của x để tập hợp S có đúng 9 phần tử?