Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quỹ tích ôn thi vào lớp 10

Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP

Nguồn: toanmath.com

Đọc Sách

Các dạng toán về biểu thức đại số
Nội dung Các dạng toán về biểu thức đại số Bản PDF - Nội dung bài viết Các dạng toán về biểu thức đại số Các dạng toán về biểu thức đại số Để đáp ứng nhu cầu của giáo viên và học sinh trung học cơ sở về các dạng toán về biểu thức đại số, chúng tôi đã tổng hợp và biên soạn nội dung học tập đa dạng, phong phú. Các bài toán trong chương trình sẽ giúp học sinh làm quen với các biểu thức đại số thông dụng, từ đơn giản đến phức tạp. Bên cạnh đó, giáo viên cũng được cung cấp tài liệu hướng dẫn giảng dạy chi tiết, từng bước giải thích rõ ràng giúp việc truyền đạt kiến thức trở nên dễ dàng hơn. Hy vọng rằng sản phẩm này sẽ giúp cả giáo viên và học sinh có một phương pháp học hiệu quả và thú vị hơn.
Các bài toán thực tế trong đề tuyển sinh vào 10 THPT
Nội dung Các bài toán thực tế trong đề tuyển sinh vào 10 THPT Bản PDF - Nội dung bài viết Cách giải các bài toán thực tế trong đề thi tuyển sinh vào 10 THPT Cách giải các bài toán thực tế trong đề thi tuyển sinh vào 10 THPT Để giúp học sinh chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT, chúng tôi đã biên soạn tài liệu hướng dẫn giải các bài toán thực tế. Tài liệu này gồm 102 trang, cung cấp phương pháp giải chi tiết từng bước một để giúp học sinh hiểu rõ vấn đề và áp dụng vào thực tế. Trên thị trường hiện nay, có nhiều dạng bài toán mới được đưa vào đề thi tuyển sinh, nên việc nắm vững cách giải các bài toán thực tế là rất quan trọng. Chúng tôi hy vọng rằng tài liệu này sẽ giúp học sinh tự tin và thành công trong kỳ thi tuyển sinh sắp tới.
Các chuyên đề lớp 10 môn Toán ôn thi vào
Nội dung Các chuyên đề lớp 10 môn Toán ôn thi vào Bản PDF - Nội dung bài viết Các chuyên đề lớp 10 môn Toán ôn thi vào Các chuyên đề lớp 10 môn Toán ôn thi vào Được biên soạn từ 190 trang tư liệu, các chuyên đề lớp 10 môn Toán không chỉ giúp học sinh ôn thi hiệu quả mà còn giúp họ rèn luyện kỹ năng giải các bài toán một cách linh hoạt. A. Các bài toán rút gọn căn thức: - Dạng 1: Biểu thức dưới dấu căn là một số thực dương. - Dạng 2: Sử dụng hằng đẳng thức √A^2 = |A|. - Dạng 3: Biểu thức dưới dấu căn đưa được về hằng đẳng thức √A^2 = |A|. - Dạng 4: Rút gọn tổng hợp bằng cách sử dụng trục căn thức, hằng đẳng thức, phân tích thành nhân tử. - Dạng 5: Bài toán chứa ẩn dưới dấu căn và các ý toán phụ. B. Các bài toán giải hệ phương trình: - Giải hệ phương trình và một số ý phụ. - Giải hệ phương trình bậc cao. C. Giải bài toán bằng cách lập hệ phương trình: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. D. Giải bài toán bằng cách lập phương trình bậc hai: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. E. Hàm số bậc nhất: F. Hàm số bậc hai: - Sự tương giao giữa đường thẳng và đồ thị hàm số bậc hai. G. Phương trình bậc hai một ẩn, hệ thức Vi-et và ứng dụng: - Dạng 1: Giải phương trình và phương trình quy về phương trình bậc hai. - Dạng 2: Hệ thức Vi-et và ứng dụng. - Dạng 3: Phương trình chứa tham số. H. Bất đẳng thức: - Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên. - Kỹ thuật chọn điểm rơi trong bài toán cực trị đạt được tại tâm.
Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019
Nội dung Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019 Bản PDF - Nội dung bài viết Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tài liệu này được biên soạn bởi hai tác giả là Tạ Công Hoàng và Nguyễn Đăng Khoa, với 119 trang tập hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT trong năm học 2018-2019. Hình học phẳng là một dạng toán không thể thiếu khi ôn thi vào trường phổ thông.