Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quỹ tích ôn thi vào lớp 10

Tài liệu gồm 52 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề quỹ tích, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP CHUNG ĐỂ GIẢI BÀI TOÁN QUỸ TÍCH I. Định nghĩa: Một hình H được gọi là tập hợp điểm (quỹ tích) của những điểm M thỏa mãn tính chất A khi và chỉ khi nó chứa và chỉ chứa những điểm có tính chất A. II. Phương pháp giải toán: Để tìm một tập hợp điểm M thỏa mãn tính chất A ta thường làm theo các bước sau: Bước 1: Tìm cách giải: + Xác định các yếu tố cố định, không đổi, các tính chất hình học có liên quan đến bài toán. + Xác định các điều kiện của điểm M. + Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: A. Phần thuận: Chứng minh điểm M thuộc hình H. B. Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M để chứng minh điểm M chỉ thuộc một phần B của hình H (nếu có). C. Phần đảo: Lấy điểm M bất kỳ thuộc B. Ta chứng minh điểm M thoả mãn các tính chất A. D. Kết luận: Tập hợp các điểm M là hình B (nêu rõ hình dạng và cách dựng hình B). III. Một số dạng quỹ tích cơ bản trong chương trình THCS: 1. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRUNG TRỰC: Tập hợp các điểm M cách đều hai điểm A B cho trước là đường trung trực của đoạn thẳng AB. 2. TẬP HỢP ĐIỂM LÀ TIA PHÂN GIÁC: Tập hợp các điểm M nằm trong góc xOy khác góc bẹt và cách đều hai cạnh của góc xOy là tia phân giác của góc xOy. 3. TẬP HỢP ĐIỂM LÀ ĐƯỜNG THẲNG, ĐƯỜNG THẲNG SONG SONG: Ta thường gặp các dạng tập hợp cơ bản như sau: 1. Tập hợp các điểm M nằm trên đường thẳng đi qua các điểm cố định A B là đường thẳng AB. 2. Tập hợp các điểm M nằm trên đường thẳng đi qua điểm cố định A tạo với đường thẳng d một góc không đổi. 3. Tập hợp các điểm M cách đường thẳng d cho trước một đoạn không đổi h là các đường thẳng song song với d và cách đường thẳng d một khoảng bằng h. 4. TẬP HỢP ĐIỂM LÀ ĐƯỜNG TRÒN, CUNG CHỨA GÓC: 1. Nếu A B cố định. Thì tập hợp các điểm M sao cho 0 AMB 90 là đường tròn đường kính AB (không lấy các điểm A B). 2. Nếu điểm O cố định thì tập hợp các điểm M cách O một khoảng không đổi R là đường tròn tâm O bán kính R. 3. Tập hợp các điểm M tạo thành với 2 đầu mút của đoạn thẳng AB cho trước một góc MAB không đổi 0 0 180 là hai cung tròn đối xứng nhau qua AB. Gọi tắt là “cung chứa góc”. MỘT SỐ BÀI TẬP TỔNG HỢP

Nguồn: toanmath.com

Đọc Sách

Một số bài toán về đường cố định và điểm cố định
Nội dung Một số bài toán về đường cố định và điểm cố định Bản PDF - Nội dung bài viết Một số bài toán về đường cố định và điểm cố địnhKiến thức cần nhớCác bước giải bài toán về đường cố định và điểm cố định Một số bài toán về đường cố định và điểm cố định Trong tài liệu này, bạn sẽ được giới thiệu với 71 trang tập hợp một số bài toán về đường cố định và điểm cố định, đều hay và khó, với đáp án và lời giải chi tiết. Đây là công cụ hữu ích cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi vào lớp 10 môn Toán cũng như cho các kỳ thi học sinh giỏi môn Toán trình độ trung học cơ sở. Kiến thức cần nhớ Để giải các bài toán về đường cố định và điểm cố định, bạn cần có kĩ năng phân tích bài toán và suy nghĩ sâu để tìm ra lời giải. Một trong những bước quan trọng là dự đoán yếu tố cố định, có thể thực hiện bằng cách giải bài toán trong trường hợp đặc biệt, xét các đường đặc biệt của một họ đường, hoặc dựa vào tính đối xứng, tính độc lập của các đối tượng. Các bước giải bài toán về đường cố định và điểm cố định Tìm hiểu bài toán: Xác định yếu tố cố định, yếu tố chuyển động, yếu tố không đổi và quan hệ không đổi Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt để dự đoán yếu tố cố định Tìm tòi hướng giải: Tìm mối quan hệ giữa yếu tố cố định với các yếu tố khác Để hiểu rõ hơn về cách giải bài toán về đường cố định và điểm cố định, tài liệu cung cấp các ví dụ minh họa và bài tập tự luyện, kèm theo hướng dẫn giải chi tiết.
Một số bài toán về diện tích
Nội dung Một số bài toán về diện tích Bản PDF - Nội dung bài viết Một số bài toán về diện tích Một số bài toán về diện tích Trong tài liệu này, chúng ta sẽ tìm hiểu về một số bài toán về diện tích, nhằm giúp học sinh có thêm kiến thức và kỹ năng trong việc giải các bài toán liên quan. Dưới đây là một số kiến thức cơ bản cần nhớ: 1. Các tính chất cơ bản của diện tích đa giác: Mỗi đa giác có diện tích xác định và là một số dương. Diện tích của hai đa giác bằng nhau khi chúng bằng nhau. Diện tích của hình vuông đơn vị là 1. Diện tích của đa giác được chia thành các đa giác con là tổng diện tích của các đa giác con đó. Nếu diện tích của một đa giác suy biến là 0 thì các đỉnh của đa giác đó cùng nằm trên một đường thẳng. 2. Diện tích tam giác: Diện tích tam giác ABC bằng nửa tích số ba cạnh và nửa chu vi: S = √(p(p-a)(p-b)(p-c)). Bán kính đường tròn ngoại tiếp tam giác ABC: R = abc / 4S. 3. Diện tích các tứ giác: Hình chữ nhật: S = a * b. Hình thang: S = 1/2 * (a + b) * h. Hình bình hành: S = a * h. Tứ giác có hai đường chéo vuông góc: S = 1/2 * d1 * d2. 4. Một số tính chất cơ bản về diện tích tam giác: Đường trung tuyến của một tam giác chia tam giác thành hai phần có diện tích bằng nhau. Trong tam giác ABC, ta luôn có AB * AC * sin(∠BAC) / 2 = SABC. Đây là những kiến thức cơ bản nhưng quan trọng về diện tích mà mọi học sinh cần ghi nhớ để giải quyết các bài toán một cách thành công. Hãy thực hành và áp dụng kiến thức này để cải thiện kỹ năng giải bài toán của mình!
Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học
Nội dung Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán vào lớp 10Các kiến thức cần nhớVí dụ minh họa và bài tập tự luyệnHướng dẫn giải và kết luận Tài liệu ôn thi Toán vào lớp 10 Tài liệu này bao gồm 102 trang, được tuyển chọn cẩn thận từ các bài toán về bất đẳng thức và cực trị hình học, cung cấp đầy đủ đáp án và lời giải chi tiết. Được thiết kế nhằm giúp học sinh trong quá trình ôn tập thi vào lớp 10 môn Toán cũng như ôn thi học sinh giỏi môn Toán ở bậc THCS. Các kiến thức cần nhớ Trước hết, tài liệu bắt đầu bằng việc giới thiệu một số kiến thức căn bản về hình học tam giác và đường tròn, giúp học sinh hiểu rõ hơn về quan hệ giữa các cạnh, góc trong tam giác và một số đặc điểm quan trọng về đường tròn. Thứ hai, tài liệu đi sâu vào quan hệ giữa đường xiên, đường vuông góc và hình chiếu của đường xiên trong các hình học phẳng, giúp học sinh hiểu rõ và áp dụng kiến thức này vào giải các bài toán phức tạp. Thứ ba, tài liệu cung cấp các bất đẳng thức liên quan đến diện tích của các hình học, từ các bất đẳng thức trong tam giác đến tứ giác, giúp học sinh rèn luyện kỹ năng tính toán và suy luận logic. Cuối cùng, tài liệu còn trình bày một số bất đẳng thức đại số thường được sử dụng, như bất đẳng thức Cauchy và Bunhiacopxki, giúp học sinh mở rộng tư duy và áp dụng kiến thức vào các bài toán phức tạp hơn. Ví dụ minh họa và bài tập tự luyện Ngoài ra, tài liệu còn bao gồm các ví dụ minh họa chi tiết và bài tập tự luyện đa dạng giúp học sinh thực hành và tự kiểm tra kiến thức của mình. Hướng dẫn giải và kết luận Để giúp học sinh hiểu rõ hơn cách giải các bài toán, tài liệu cung cấp hướng dẫn giải chi tiết từng bước, giúp học sinh tự tin hơn khi đối mặt với các bài toán khó. Kết luận cuốn tài liệu là sự tổng kết chặt chẽ về các kiến thức cơ bản và quan trọng giúp học sinh nắm vững kiến thức trước khi bước vào kỳ thi quan trọng.
Bài toán về quỹ tích tập hợp điểm
Nội dung Bài toán về quỹ tích tập hợp điểm Bản PDF Nội dung này là tài liệu tập hợp 59 trang, tập trung vào việc giải bài toán về quỹ tích - tập hợp điểm trong môn Toán. Tài liệu cung cấp các bài toán khó và hay, đi kèm với đáp án và lời giải chi tiết. Đây là tài liệu hữu ích cho học sinh ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán và các kỳ thi học sinh giỏi cấp THCS.Tài liệu bắt đầu với việc giải thích định nghĩa của tập hợp điểm (quỹ tích), nơi một hình được xác định bởi các điểm thoả mãn một số tính chất. Sau đó, tài liệu hướng dẫn phương pháp chính để giải bài toán tập hợp điểm, bao gồm các bước cần thiết để tìm ra tập hợp các điểm thoả mãn một số điều kiện cho trước.Tài liệu cũng cung cấp một số kiến thức và tập hợp điểm cơ bản, như đường trung trực, tia phân giác, đường thẳng song song và đường tròn. Các định lí và hệ quả được trình bày rõ ràng, giúp học sinh hiểu rõ về các tập hợp điểm này và cách xác định chúng.Cuối cùng, tài liệu cũng đi kèm với các ví dụ minh họa và bài tập tự luyện để học sinh có thể rèn luyện kỹ năng giải bài toán về quỹ tích - tập hợp điểm. Hướng dẫn giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề và áp dụng kiến thức vào thực tế.Tóm lại, tài liệu này là nguồn thông tin hữu ích và chi tiết về cách giải bài toán về quỹ tích - tập hợp điểm trong môn Toán, giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để thành công trong kỳ thi và các kỳ thi học sinh giỏi.