Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 Toán 10 năm 2023 - 2024 trường THPT Đống Đa - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra đánh giá cuối học kì 2 môn Toán 10 năm học 2023 – 2024 trường THPT Đống Đa, thành phố Hà Nội. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Trắc nghiệm nhiều phương án trả lời; Trắc nghiệm lựa chọn đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kì 2 Toán 10 năm 2023 – 2024 trường THPT Đống Đa – Hà Nội : + Cho nhị thức 5 3 2 x. a) Số hạng chứa 5 x trong khai triển Niuton của nhị thức trên là 5 243x b) Hệ số của số hạng chứa 2 x trong khai triển Niuton của nhị thức trên là 720 c) Số hạng không chứa x trong khai triển Niuton của nhị thức trên là −32 d) Tổng các hệ số trong khai triển Niuton của nhị thức trên bằng 1. + Trong chương trình văn nghệ của buổi lễ kỉ niệm ngày giải phóng miền Nam và thống nhất đất nước 30 tháng 4, đội văn nghệ nhà trường thực hiện 2 tiết mục múa, 5 tiết mục hát và 3 tiết mục kịch. a) Có 10! cách xếp thứ tự các tiết mục văn nghệ đó trong chương trình biểu diễn. b) Có 40 cách chọn ra 4 tiết mục văn nghệ để tặng hoa. c) Có 30 cách chọn ra 3 tiết mục để tặng hoa, sao cho có đủ cả múa, hát và kịch. d) Có 50 cách chọn ra 3 tiết mục văn nghệ để dự thi sao cho có đúng 1 tiết mục múa. + Ba bạn Bình, Duy, Nam mỗi bạn viết ngẫu nhiên một số tự nhiên thuộc đoạn [1;16] được kí hiệu theo thứ tự abc rồi lập phương trình bậc hai 2 ax bx c 2 0. Gọi m P m n nguyên dương và là hai số nguyên tố cùng nhau là xác suất để phương trình lập được có nghiệm kép. Khi đó m n?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tìm m để phương trình 2 m x m x m 1 3 1 0 có hai nghiệm phân biệt. + Trong mặt phẳng Oxy, viết phương trình chính tắc của elip (E), biết (E) có độ dài trục lớn bằng 16 và tiêu điểm F1(3;0). + Trong mặt phẳng Oxy, cho hai điểm A, B. Viết phương trình đường tròn có đường kính là AB.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.