Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Lâm Đồng

Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Lâm Đồng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Lâm Đồng; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Lâm Đồng : + Đầu năm học 2022 – 2023, Trường THPT X tuyển sinh bốn lớp 10 theo 4 tổ hợp môn lựa chọn. Khi kết thúc đợt tuyển sinh, còn thiếu 5 học sinh theo chỉ tiêu được giao. Trong đợt tuyển sinh bổ sung có 5 học sinh đủ điều kiện xét tuyển và được chọn lớp học theo tổ hợp môn lựa chọn. Tính xác suất để trong 5 học sinh đó có 3 học sinh chọn vào cùng một lớp, trong ba lớp còn lại có hai lớp mỗi lớp có 1 học sinh chọn và một lớp không có học sinh nào chọn. + Bạn An có một tấm tôn phế liệu hình tam giác đều có cạnh 60 cm, bạn An dự định cắt bỏ ở ba góc ba phần bằng nhau sao cho phần còn lại là hình gồm một tam giác đều và ba hình chữ nhật có kích thước bằng nhau (như hình 1), rồi gấp ba hình chữ nhật lại tạo thành một chậu hoa hình lăng trụ tam giác đều (như hình 2): Hình 1 Hình 2. Biết phần cạnh tấm tôn bị cắt bỏ ở mỗi góc bằng 10 cm, tính thể tích chậu hoa đó. + Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, ABC = 120°, AB = a, SB vuông góc với mặt phẳng (ABC), góc giữa hai mặt phẳng (SAC) và (ABC) bằng 45. Gọi M là trung điểm của AC và N là trung điểm của SM. Điểm P trên cạnh SC sao cho SP = 2PC. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng BN và MP.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT Quảng Nam
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT Quảng Nam Bản PDF Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 12 hệ THPT cấp tỉnh năm học 2019 – 2020. Đề thi học sinh giỏi Toán lớp 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 40 câu hỏi và bài toán, thời gian làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam : + Cắt tấm bìa hình tròn có bán kính bằng 1 (độ dày không đáng kể) theo đường gấp khúc SAQCPBS như hình 1, sau đó gấp phần đa giác còn lại theo các đoạn AB, BC, CA sao cho các điểm S, P, Q trùng nhau để được hình chóp đều có đáy là tam giác ABC như hình 2. Giá trị lớn nhất của thể tích khối chóp SABC bằng? + Trong không gian Oxyz, cho hai điểm AB, theo thứ tự thay đổi trên các tia Ox, Oy sao cho OA.OB = 9. Điểm S thuộc mặt phẳng (Ozx) sao cho hai mặt phẳng (SAB) và (SOB) cùng tạo với mặt phẳng (Oxy) một góc 30 độ. Gọi (a;0;c) là tọa độ điểm S. Tính giá trị của biểu thức P = a^4 + c^4 trong trường hợp thể tích khối chóp S.OAB đạt giá trị lớn nhất. [ads] + Đồ thị (C) của hàm số y = ax^3 + bx^2 + cx + 3a và đồ thị (C’) của hàm số y = 3ax^2 + 2bx + c (a, b, c thuộc R và a > 0) có đúng hai điểm chung khác nhau A, B và điểm A có hoành độ bằng 1. Các tiếp tuyến của (C) và (C’) tại điểm A trùng nhau; diện tích hình phẳng giới hạn bởi (C) và (C’) bằng 1. Giá trị của a + b + c bằng?
Đề thi HSG lớp 12 môn Toán năm học 2019 2020 sở GD ĐT thành phố Hồ Chí Minh
Nội dung Đề thi HSG lớp 12 môn Toán năm học 2019 2020 sở GD ĐT thành phố Hồ Chí Minh Bản PDF Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn thi Toán năm học 2019 – 2020. Đề thi HSG Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 90 phút. Trích dẫn đề thi HSG Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tập hợp X = {x | x thuộc Z; -5 ≤ x ≤ 5; x khác 0}. Chọn ngẫu nhiên 4 số đôi một phân biệt a, b, c, d thuộc X. Tính xác suất để hàm số y = (ax + b)/(cx + d) (với ad khác bc) có đồ thị (C) mà cả (C) lẫn tiệm cận đứng của (C) đều cắt trục Ox theo chiều dương. [ads] + Cho hàm số f(x) = 1/2.x^2 – mx, tham số m khác 1, có đồ thị (C1), (C2). Biết rằng tồn tại đúng hai số x0 thuộc (2;3) sao cho nếu gọi d1, d2 là tiếp tuyến tại các điểm có hoành độ x0 thuộc (C1), (C2) và d1, d2 cắt nhau ở A, còn d1, d2 cắt trục Ox ở B, C thì AB = AC. Tìm tất cả các giá trị m. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi d là đường thẳng di động đi qua điểm I(1;1) và cắt (C) tại hai điểm M, N. Tính khoảng cách từ điểm A(2;-3) đến d khi tam giác AMN có diện tích nhỏ nhất.
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT An Giang
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT An Giang Bản PDF Sáng thứ Bảy ngày 06 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề), các dạng toán gồm: Cấp số cộng và cấp số nhân, Phương trình lượng giác, Bài toán đếm, Hình học không gian, Giải và biện luận bất phương trình. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang : + Bốn số lập thành một cấp số cộng, lần lượt trừ mỗi số ấy cho 2, 6, 7, 2 ta nhận được một cấp số nhân. Tìm bốn số đó. [ads] + Một đa giác đều (H) có 20 cạnh. Xét các tam giác có ba đỉnh lấy từ các đỉnh của (H). a. Có bao nhiêu tam giác có đúng một cạnh là cạnh của (H). b. Có bao nhiêu tam giác không có cạnh nào là cạnh của (H). + Cho hàm số y = f(x) = x^2 + bx + 1 với b là tham số. Xét bất phương trình f(f(x) + x) < 0. a. Giải bất phương trình khi b = 2 và b = 3. b. Tìm b để bất phương trình có đúng một nghiệm nguyên.
Đề thi học sinh giỏi lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Đà Nẵng
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Đà Nẵng Bản PDF Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng mã đề 102 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, học sinh làm bài bằng cách chọn và tô kín một ô tròn trên phiếu trả lời trắc nghiệm tương ứng với phương án trả lời đúng của mỗi câu. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng : + Trong không gian Oxyz, cho mặt phẳng (P): ax + by + cz + 7 = 0 qua điểm A(2;0;1), vuông góc với mặt phẳng (Q): 3x – y + z + 1 = 0 và tạo với mặt phẳng (R): x – y + 2z – 1 = 0 một góc 60°. Tổng a + b + c bằng? [ads] + Cho hình chóp S.ABCD có đường cao SA = 4a. Biết đáy ABCD là hình thang vuông tại A và B với AB = BC = 3a, AD = a. Gọi M là trung điểm của cạnh AB và (alpha) là mặt phẳng qua M vuông góc với AB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (alpha) là đa giác có diện tích bằng? + Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên abcdef có sáu chữ số đôi một khác nhau mà mỗi số đều thỏa mãn d + e + f – a – b – c = 1?