Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quế Võ - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quế Võ, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quế Võ – Bắc Ninh : + Tìm các số tự nhiên x; y sao cho x2 + 3x + 1 = 5y. + Có bao nhiêu cách viết các số tự nhiên từ 1 đến 15 thành một dãy sao cho tổng của hai số liên tiếp bất kỳ trong dãy đều là số chính phương. + Cho hai đường tròn (O) và (O’) thay đổi nhưng luôn cắt nhau tại hai điểm phân biệt A và B cố định. Gọi M là trung điểm của OO’ và T là điểm đối xứng với A qua M. Đường tròn tâm T bán kinh TA tương ứng cắt các đường tròn (O) và (O’) tại các giao điểm thứ hai là E và F. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O’) b) Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A, khi hai đường tròn (O) và (O’) thay đổi nhưng luôn đi qua A, B c) Trên đường tròn (O) lấy điểm P bất kỳ sao cho PA cắt (O’) tại Q. Chứng minh rằng TP = TQ.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết
Tài liệu tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết từ các trường THPT và cơ sở Giáo dục – Đào tạo trên toàn quốc. Các đề thi theo hình thức tự luận, hy vọng bộ đề học sinh giỏi các năm học trước sẽ giúp các em học sinh nắm được cấu trúc đề, nội dung cần ôn tập chuẩn bị cho kỳ thi HSG Toán 9 sắp tới.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 9 - Hồ Khắc Vũ
Tài liệu gồm 114 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 9 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi chọn đội tuyển học sinh giỏi Toán 9 năm học 2017 - 2018 trường THCS Trần Mai Ninh - Thanh Hóa (Vòng 1)
Đề thi chọn đội tuyển học sinh giỏi (HSG) Toán 9 năm học 2017 – 2018 trường THCS Trần Mai Ninh – Thanh Hóa (Vòng thi thứ nhất) gồm 5 bài toán tự luận. Trích dẫn đề thi : + Cho hình vuông ABCD, có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I. a. Chứng minh: CI.CM = CN.CB b. Chứng minh: DI = 4IN c. Kẻ tia AH vuông góc với DN tại H và tia AH cắt CD tại P. Cho AB = a Tính diện tích tứ giác HICP [ads] + Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd. + Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6. + Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.