Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán lần 2 năm 2020 2021 trường Lương Thế Vinh Hà Nội

Nội dung Đề thi thử vào môn Toán lần 2 năm 2020 2021 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội Đề thi thử vào môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội Ngày ... tháng 05 năm 2020, trường THCS và THPT Lương Thế Vinh, thành phố Hà Nội đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020-2021 lần thi thứ hai. Đề thi thử vào lớp 10 môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội bao gồm 5 bài toán dạng tự luận, theo cấu trúc đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề thi thử vào lớp 10 môn Toán lần 2 năm 2020-2021 trường Lương Thế Vinh Hà Nội: + Cho đường tròn (O;R) và dây cung BC = R√3 cố định. Một điểm A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, AM là đường kính của (O). Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh các tứ giác BCEF, AEHF nội tiếp. b) Chứng minh tứ giác BHCM là hình bình hành và tính độ dài của đoạn AH. c) Kẻ DP vuông góc với BE tại P, đường thẳng qua P và vuông góc với đường kính AM cắt CF tại Q. Chứng minh rằng PQ ≤ HD. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe theo kế hoạch chở hết 200 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 25 tấn. Tính thời gian đội chở hết hàng theo kế hoạch. + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m-3)x + 2m-5. a) Khi m = 4 , hãy tìm tọa độ giao điểm của (P) và (d). b) Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B nằm khác phía của trục Oy sao cho tam giác OAB vuông tại O. 3. Tìm m để phương trình sau có bốn nghiệm phân biệt x^4 - (3m - 2)x^2 + 3m - 3 = 0.

Nguồn: sytu.vn

Đọc Sách

200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán
Nội dung 200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán Bản PDF - Nội dung bài viết 200 bài tập rút gọn biểu thức và bài toán Toán lớp 10 200 bài tập rút gọn biểu thức và bài toán Toán lớp 10 Bộ tài liệu này được biên soạn bởi thầy giáo Nguyễn Chí Thành, gồm tổng cộng 185 trang, bao gồm 200 bài tập rút gọn biểu thức và các bài toán liên quan trong các đề thi tuyển sinh vào lớp 10 môn Toán. Mỗi bài tập đều đi kèm đáp án và lời giải chi tiết, giúp học sinh có thể tự ôn tập và rèn luyện kỹ năng giải toán một cách hiệu quả. Trích dẫn một số nội dung bài tập trong tài liệu: Cho biểu thức A và B. Hãy tính giá trị biểu thức B khi x = 25 và chứng minh một số mệnh đề liên quan. Cho biểu thức A, rút gọn biểu thức đó và tìm giá trị của x để biểu thức A bằng 4/5. Cho hai biểu thức A và B với điều kiện x >= 0 và x khác 1. Tính giá trị của biểu thức A, rút gọn biểu thức C = A + B và so sánh giá trị của biểu thức C với 1. Bộ tài liệu này sẽ giúp học sinh hiểu rõ hơn về cách rút gọn biểu thức và giải quyết các bài toán liên quan trong đề thi Toán lớp 10. Đồng thời, các lời giải chi tiết sẽ giúp họ nắm vững kiến thức và áp dụng vào các bài toán thực tế.
Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán
Nội dung Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán Bản PDF - Nội dung bài viết Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán Tuyển tập 400 bài toán hình học trong các đề thi vào môn Toán Tài liệu này bao gồm tổng cộng 567 trang với 400 bài toán hình học từ các đề thi vào môn Toán. Những bài toán này được tuyển chọn kỹ lưỡng và đa dạng, giúp bạn ôn luyện, rèn luyện và nắm vững kiến thức trong môn học này. Dù bạn là người mới học hay bạn đã có kiến thức cơ bản, tài liệu này sẽ giúp bạn tăng cường kỹ năng giải toán hình học một cách hiệu quả.
Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán
Nội dung Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Bản PDF - Nội dung bài viết Tuyển tập bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Tuyển tập bài toán bất đẳng thức trong kì thi tuyển sinh chuyên Toán Tài liệu này được biên soạn bởi tác giả Nguyễn Nhất Huy từ Tạp Chí và Tư Liệu Toán Học. Được chia thành 4 phần chính giúp học sinh hiểu rõ về bất đẳng thức và cách giải các bài toán liên quan trong kì thi tuyển sinh vào lớp 10 chuyên Toán. Phần 1 bắt đầu bằng việc giới thiệu các kiến thức cơ bản về bất đẳng thức, bao gồm một số kí hiệu phổ biến và các bất đẳng thức như AM – GM, Cauchy – Schwarz, cũng như điều kiện có nghiệm của phương trình. Phần 2 tập trung vào các bài toán bất đẳng thức thường xuất hiện trong các kỳ thi tuyển sinh vào lớp 10 chuyên Toán, mang tính chất lý thú và thách thức cho học sinh. Phần 3 giới thiệu các phương pháp chứng minh bất đẳng thức khác nhau, từ tam thức bậc hai đến phương pháp PQR và bất đẳng thức Schur, cũng như phân tích tổng bình phương SOS và Schus – SOS để giúp học sinh làm quen với các kỹ năng giải bài toán phức tạp hơn. Phần 4 là các bài toán luyện tập, giúp củng cố kiến thức và kỹ năng của học sinh trong việc áp dụng bất đẳng thức vào thực tế. Tuyển tập này không chỉ giúp học sinh nắm vững kiến thức căn bản về bất đẳng thức mà còn phát triển kỹ năng giải quyết bài toán một cách logic và chính xác trong kì thi tuyển sinh chuyên Toán.
Toàn cảnh đề Toán tuyển sinh trường chuyên năm học 2019 2020
Nội dung Toàn cảnh đề Toán tuyển sinh trường chuyên năm học 2019 2020 Bản PDF - Nội dung bài viết Giới Thiệu Về Tài Liệu Toàn Cảnh Đề Toán Tuyển Sinh Lớp 10 Trường Chuyên Năm Học 2019 - 2020 Giới Thiệu Về Tài Liệu Toàn Cảnh Đề Toán Tuyển Sinh Lớp 10 Trường Chuyên Năm Học 2019 - 2020 Sytu xin được trình bày đến quý thầy cô và các em học sinh về tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 - 2020 do thầy Vũ Ngọc Thành tổng hợp. Tài liệu bao gồm 312 trang phân loại các câu hỏi và bài tập trong các đề Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 - 2020 thành các chuyên đề, đồng thời cung cấp lời giải chi tiết cho từng câu hỏi. Cụ thể, tài liệu toàn cảnh này bao gồm các chuyên đề sau: Chuyên đề 1: Căn bậc hai và bài toán liên quan (Trang 2). Chuyên đề 2: Bất đẳng thức - giá trị lớn nhất & giá trị nhỏ nhất (Trang 29). Chuyên đề 3: Phương trình (Trang 62). Chuyên đề 4: Hệ phương trình (Trang 104). Chuyên đề 5: Hàm số (Trang 131). Chuyên đề 6: Giải bài toán bằng cách lập phương trình - hệ phương trình - bài toán thực tế (Trang 150). Chuyên đề 7: Hình học (Trang 158). Chuyên đề 8: Số học (Trang 262). Chuyên đề 9: Biểu thức (Trang 304). Đây sẽ là nguồn tư liệu hữu ích để các em học sinh ôn tập Toán một cách toàn diện, chuẩn bị tốt cho kỳ thi tuyển sinh vào trường chuyên. Hy vọng tài liệu này sẽ giúp các em đạt được kết quả cao trong kỳ thi sắp tới. Xin cảm ơn!