Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học chuyên đề số phức - Nguyễn Trọng

Tài liệu gồm 81 trang được biên soạn bởi thầy Nguyễn Trọng, hướng dẫn tự học chuyên đề số phức, thuộc chương trình Giải tích 12 chương 3, tài liệu phù hợp đối với học sinh theo học ban cơ bản, ôn thi THPT Quốc gia khối Khoa học Xã hội. Mục lục tài liệu tự học chuyên đề số phức – Nguyễn Trọng: Bài 1 . Số phức. + Dạng 1. Xác định các yếu tố cơ bản của số phức. + Dạng 2. Biểu diễn hình học của số phức. + Dạng 3. Số phức bằng nhau. + Đề kiểm tra 45 phút Số phức. Bài 2 . Cộng trừ và nhân số phức. + Dạng 1. Thực hiện phép tính. + Dạng 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. + Dạng 3. Bài toán quy về phương trình hệ phương trình nghiệm thực. + Dạng 4. Bài toán tập hợp điểm biểu diễn số phức. + Bài kiểm tra 45 phút Cộng trừ và nhân số phức. [ads] Bài 3 . Phép chia số phức. + Dạng 1. Thực hiện phép tính. + Dạng 2. Thực hiện phép tính từ đó suy ra các yếu tố liên quan đến số phức. + Dạng 3. Giải phương trình bậc nhất từ đó suy ra các yếu tố liên quan đến số phức. + Bài kiểm tra 45 phút Phép chia số phức. Bài 4 . Phương trình bậc hai với hệ số thực. + Dạng 1. Tìm căn bậc hai của số thực âm. + Dạng 2. Tìm nghiệm phức của phương trình bậc hai – tìm các yếu tố liên quan đến hai nghiệm. + Dạng 3. Tìm nghiệm phức của phương trình bậc cao. + Dạng 4. Mối liên hệ giữa hai nghiệm của phương trình bậc hai, tìm phương trình khi biết trước nghiệm của nó. + Đề kiểm tra 45 phút Phương trình bậc hai với hệ số thực.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cực trị số phức
Tài liệu gồm 60 trang, phân dạng và hướng dẫn giải các bài tập trắc nghiệm vận dụng cao (VDC) chuyên đề cực trị số phức, giúp học sinh chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. A. MỘT SỐ TÍNH CHẤT CẦN NHỚ 1. Môđun của số phức. 2. Một số quỹ tích nên nhớ. B. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng. Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn. Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip. C. BÀI TẬP ÁP DỤNG
Tổng ôn tập TN THPT 2021 môn Toán Số phức
Tài liệu gồm 84 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề số phức, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 4, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Số phức: 1. Mức độ nhận biết: 81 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 08). 2. Mức độ thông hiểu: 75 câu. + Câu hỏi và bài tập (Trang 21). + Đáp án và lời giải chi tiết (Trang 28). 3. Mức độ vận dụng thấp: 42 câu. + Câu hỏi và bài tập (Trang 44). + Đáp án và lời giải chi tiết (Trang 48). 4. Mức độ vận dụng cao: 29 câu. + Câu hỏi và bài tập (Trang 63). + Đáp án và lời giải chi tiết (Trang 67).
Tài liệu tự học chuyên đề số phức - Bùi Đình Thông
Tài liệu gồm 68 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, hướng dẫn học sinh lớp 12 tự học chuyên đề số phức (Giải tích 12 chương 4). Bài 1. Mở đầu về số phức. Bài 2. Phép tính số phức. Bài tập rèn luyện số phức và các tính chất. Bài tập rèn luyện các phép toán số phức. Bài toán quỹ tích (tập hợp điểm). Bài tập rèn luyện tìm tập hợp điểm của số phức. Bài 3. Phương trình bậc hai số phức. Bài tập rèn luyện phương trình bậc hai số phức. Cực trị của số phức. Bài tập rèn luyện cực trị của số phức.
Lý thuyết và bài tập số phức có đáp án - Lư Sĩ Pháp
Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, tóm tắt lý thuyết, phương pháp giải các dạng toán và tuyển chọn các bài tập tự luận + trắc nghiệm số phức có đáp án, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp THPT môn Toán. A. KIẾN THỨC CẦN NẮM 1. Số phức. 2. Các phép toán trên số phức. 3. Mối liên hệ giữa z và z‾. 4. Phương trình bậc hai với hệ số thực. 5. Cực trị số phức a. Bất đẳng thức tam giác. b. Công thức trung tuyến. c. Tập hợp điểm. 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R với R > 0. Tìm giá trị nhỏ nhất, lớn nhất của |z|. Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1 với r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2|. Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k với k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z|. Dạng 4. Cho hai số phức z1 và z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2|. B. BÀI TẬP TỰ LUẬN Dạng 1. Tìm số phức, số phức liên hợp, phần thực, phần ảo, môđun của một số phức. Dạng 2. Nhìn vào hệ tọa độ Oxy xác định tọa độ của điểm biểu diễn số phức. Dạng 3. Tìm tọa độ điểm biểu diễn của số phức trong mặt phẳng tọa độ Oxy. Dạng 4. Giải phương trình bậc hai trên tập số phức và vận dụng định lí Vi-ét. C. CÂU HỎI TRẮC NGHIỆM