Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán khó về quan hệ vuông góc

Tài liệu gồm 111 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển chọn các bài toán hay và khó về chủ đề vectơ trong không gian, quan hệ vuông góc, thuộc chương trình Hình học 11 chương 3, có đáp án và lời giải chi tiết. 1. Phương pháp vector Đây là một phương pháp rất mạnh để xử lý các bài toán có yếu tố vuông góc ví dụ như hình hộp chữ nhật, hình lập phương, khối tứ diện đều. 1.1 Cơ sở của phương pháp vector. + Quy tắc hình hộp. + Quy tắc trọng tâm tứ diện. + Quy tắc đồng phẳng. 1.2 Các dạng toán và phương pháp giải. Dạng toán 1 . Chứng minh đẳng thức vector. Sử dụng quy tắc cộng, quy tắc trừ ba điểm, quy tắc trung điểm đoạn thẳng, trọng tâm tam giác, trọng tâm tứ giác, quy tắc hình bình hành, quy tắc hình hộp … để biến đổi vế này thành vế kia. Dạng toán 2 . Ba vector đồng phẳng và bốn điểm đồng phẳng. + Để chứng minh ba vector a, b, c đồng phẳng ta có thể thực hiện theo một trong các cách sau: 1. Chứng minh giá của ba vector a, b, c cùng song song với một mặt phẳng. 2. Phân tích c = ma + nb trong đó a, b là hai vector không cùng phương. + Để chứng minh bốn điểm A, B, C, D đồng phẳng ta có thể chứng minh ba vector AB, AC, AD đồng phẳng. Ngoài ra có thể sử dụng kết quả quen thuộc sau: Điều kiện cần và đủ để điểm D thuộc (ABC) là với mọi điểm O bất kì ta có OD = xOA + yOB + zOC trong đó x + y + z = 1. Tính chất trên gọi là tâm tỉ cự trong không gian. Dạng toán 3 . Tính độ dài đoạn thẳng. Để tính độ dài của một đoạn thẳng theo phương pháp vector ta sử dụng cơ sở a2 = |a|2 ⇒ |a| = √a2. 2. Ứng dụng của phương pháp Vector trong một số bài toán đặc biệt 2.1 Góc tạo bởi hai cạnh bất kì của một tứ diện. 2.2 Bổ đề về đường trung bình. 2.3 Ứng dụng trong một số bài toán cực trị. 3. Tuyển tập các bài toán trắc nghiệm khó

Nguồn: toanmath.com

Đọc Sách

Vectơ trong không gian, quan hệ vuông góc - Trần Quốc Nghĩa
Với mục đích bổ trợ cho học sinh khối 11 trong quá trình học chương trình Hình học 11 chương 3, thầy Trần Quốc Nghĩa đã biên soạn và chia sẻ tài liệu vectơ trong không gian, quan hệ vuông góc. Tài liệu gồm 101 trang với đầy đủ lý thuyết, dạng toán và bài tập chủ đề vectơ trong không gian, quan hệ vuông góc, sẽ giúp các em dễ dàng tiếp cận và học tốt hơn hình học không gian. Khái quát nội dung tài liệu vectơ trong không gian, quan hệ vuông góc – Trần Quốc Nghĩa: Vấn đề 1 . VÉCTƠ TRONG KHÔNG GIAN + Dạng 1. Tính toán véctơ. + Dạng 2. Chứng minh đẳng thức véctơ. + Dạng 3. Quan hệ đồng phẳng. + Dạng 4. Cùng phương và song song. BÀI TẬP CƠ BẢN NÂNG CAO VẤN ĐỀ 1 BÀI TẬP TRẮC NGHIỆM Vấn đề 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC + Dạng 1. Chứng minh vuông góc. + Dạng 2. Góc giữa hai đường thẳng. BÀI TẬP CƠ BẢN NÂNG CAO VẤN ĐỀ 2 BÀI TẬP TRẮC NGHIỆM Vấn đề 3 . ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. + Dạng 2. Góc giữa đường thẳng và mặt phẳng. + Dạng 3. Thiết diện qua một điểm cho trước và vuông góc với trước. + Dạng 4. Điểm cố định – Tìm tập hợp điểm. BÀI TẬP CƠ BẢN NÂNG CAO VẤN ĐỀ 3 BÀI TẬP TRẮC NGHIỆM Vấn đề 4 . HAI MẶT PHẲNG VUÔNG GÓC + Dạng 1. Góc giữa hai mặt phẳng. + Dạng 2. Chứng minh hai mặt phẳng vuông góc. + Dạng 3. Thiết diện chứa đường thẳng a và vuông góc với mặt phẳng (α). + Dạng 4. Hình lăng trụ – Hình lập phương – Hình hộp. BÀI TẬP TRẮC NGHIỆM Vấn đề 5 . KHOẢNG CÁCH + Dạng 1. Khoảng cách từ một điểm đến đường thẳng, mặt phẳng. + Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TRẮC NGHIỆM ĐÁP ÁN TRẮC NGHIỆM
Chuyên đề góc và khoảng cách trong không gian - Nguyễn Nhanh Tiến
Tài liệu gồm 66 trang được biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến hướng dẫn phương pháp giải các dạng toán chuyên đề góc và khoảng cách trong không gian. Khái quát nội dung tài liệu chuyên đề góc và khoảng cách – Nguyễn Hữu Nhanh Tiến: §1. CÁC DẠNG TOÁN LIÊN QUAN ĐẾN TÍNH GÓC 1. 1 Góc giữa hai đường thẳng Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt song song với a và b. Xác định góc giữa hai đường thẳng trong không gian. Ta thường có hai phương pháp để giải quyết cho dạng toán này. + Phương pháp 1: Sử dụng định nghĩa góc giữa hai đường thẳng, kết hợp sử dụng hệ thức lượng trong tam giác (định lý cos, công thức trung tuyến). + Phương pháp 2: Sử dụng tích vô hương của hai vec-tơ. 1. 2 Góc giữa đường thẳng và mặt phẳng Cho đường thẳng d và mặt phẳng (α). + Trường hợp đường thẳng d vuông góc với mặt phẳng (α) thì ta nói rằng góc giữa đường thẳng d và mặt phẳng (α) bằng 90◦. + Trường hợp đường thẳng d không vuông góc với mặt phẳng (α) thì góc giữa đường thẳng d và hình chiếu d’ của nó trên (α) gọi là góc giữa đường thẳng d và mặt phẳng (α). 1. 3 Góc giữa hai mặt phẳng Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. Hai mặt phẳng song song hoặc trùng nhau thì góc giữa chúng bằng 0◦. Cách xác định góc của hai mặt phẳng cắt nhau: + Bước 1. Tìm giao tuyến c của (α) và (β). + Bước 2. Tìm hai đường thẳng a, b lần lượt thuộc hai mặt phẳng và cùng vuông góc với c tại một điểm. + Bước 3. Góc giữa (α) và (β) là góc giữa a và b. 1. 4 Một số bài toán áp dụng phương pháp tọa độ trong không gian [ads] §2. KHOẢNG CÁCH 2. 1 Khoảng cách từ một điểm tới một đường thẳng Để tính khoảng cách từ điểm O tới đường thẳng (d), ta thực hiện các bước sau: + Trong mặt phẳng (O;d), hạ OH ⊥ (d) tại H. + Tính độ dài OH dựa trên các công thức về hệ thức lượng trong tam giác, tứ giác và đường tròn. 2. 2 Khoảng cách từ một điểm đến một mặt phẳng Cho mặt phẳng (α) và một điểm O, gọi H là hình chiếu vuông góc của điểm O trên mặt phẳng (α). Khi đó khoảng cách OH được gọi là khoảng cách từ điểm O đến mặt phẳng (α), kí hiệu d (O,(α)) = OH. 2. 3 Khoảng cách giữa đường và mặt song song – giữa hai mặt song song Cho đường thẳng d song song với mặt phẳng (α), để tính khoảng cách giữa d và (α) ta thực hiện: + Chọn điểm A trên d sao cho khoảng cách từ A tới (α) được xác định dễ nhất. + Kết luận d(d;(α)) = d(A,(α)). Cho hai mặt phẳng song song (α), (β). Để tính khoảng cách giữa hai mặt phẳng ta thực hiện các bước: + Chọn điểm A trên (α) sao cho khoảng cách từ A tới (β) được xác định dễ nhất. + Kết luận d((β);(α)) = d(A,(β)). 2. 4 Đoạn vuông góc chung, khoảng cách giữa hai đường thẳng chéo nhau Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó chứa đường thẳng còn lại. Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
Phương pháp giải toán Hình học 11 chương 3 Quan hệ vuông góc - Nguyễn Ngọc Dũng
Tài liệu gồm 86 trang trình bày phương pháp giải các dạng toán và bài tập tự luận – trắc nghiệm có đáp án chủ đề Quan hệ vuông góc trong chương trình Hình học 11 chương 3. Nội dung tài liệu : Bài 1. Đường thẳng vuông góc với đường thẳng. Đường thẳng vuông góc với mặt phẳng I. Tóm tắt lý thuyết   1. Đường thẳng vuông góc với đường thẳng. Đường thẳng vuông góc với mặt phẳng 2. Mặt phẳng trung trực của đoạn thẳng II. Các dạng toán + Dạng 1: Đường vuông góc đường. Đường vuông góc mặt + Dạng 2: Góc giữa đường thẳng và mặt phẳng Bài 2. Hai mặt phẳng vuông góc I. Tóm tắt lý thuyết   1. Hai mặt phẳng vuông góc 2. Các định lý quan trọng 3. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương 4. Hình chóp đều và hình chóp cụt đều 5. Trục của đường tròn ngoại tiếp tam giác II. Các dạng toán + Dạng 1: Hai mặt phẳng vuông góc + Dạng 2: Góc giữa hai mặt phẳng Bài 3. Khoảng cách  I. Tóm tắt lý thuyết 1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song 3. Khoảng cách giữa hai đường thẳng chéo nhau II. Các dạng toán + Dạng 1: Khoảng cách từ một điểm đến một mặt phẳng + Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau Bài 4. Diện tích hình chiếu  Bài 5. Ôn tập Hình học 11 chương 3 [ads] Tài liệu được trình bày bằng LaTex rất đẹp, bạn đọc có thể xem thêm các tài liệu khác của thầy Nguyễn Ngọc Dũng sau đây: + Đường thẳng và mặt phẳng trong không gian, quan hệ song song – Nguyễn Ngọc Dũng (Hình học 11 chương 2) + 100 bài tập trắc nghiệm rèn luyện kỹ năng đọc bảng biến thiên và đồ thị của hàm số – Nguyễn Ngọc Dũng (Giải tích 12 chương 1) + Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit – Nguyễn Ngọc Dũng (Giải tích 12 chương 2) + Bài tập trắc nghiệm mặt nón, mặt trụ, mặt cầu có đáp án – Nguyễn Ngọc Dũng (Hình học 12 chương 2) Xem thêm các tài liệu hay về chủ đề quan hệ vuông góc: + Phân dạng và hướng dẫn giải bài toán quan hệ vuông góc trong không gian – Đặng Việt Đông (235 trang) + Chuyên đề vector trong không gian, quan hệ vuông góc – Nguyễn Bảo Vương (165 trang)
Phân dạng và hướng dẫn giải bài toán quan hệ vuông góc trong không gian - Đặng Việt Đông
Tài liệu gồm 235 trang phân dạng, hướng dẫn phương pháp giải và tuyển tập các bài toán trắc nghiệm chủ đề quan hệ vuông góc trong không gian (Hình học 11) có đáp án kèm lời giải chi tiết. Các dạng toán gồm: Véctơ trong không gian Hai đường thẳng vuông góc + Dạng 1. Tính góc giữa hai đường thẳng + Dạng 2. Chứng minh hai đường thẳng vuông góc và các bài toán liên quan Đường thẳng vuông góc với mặt phẳng + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng và đường thẳng vuông góc đường thẳng + Dạng 2. Tính góc giữa đường thẳng và mặt phẳng + Dạng 3. Thiết diện và các bài toán liên quan [ads] Hai mặt phẳng vuông góc + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng và các bài toán liên quan + Dạng 3. Tính độ dài đoạn thẳng, diện tích hình chiếu, chu vi và diện tích đa giác + Dạng 4. Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng Khoảng cách + Dạng 1. Tính khoảng cách từ điểm m đến đường thẳng δ + Dạng 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng + Dạng 3. Khoảng cách giữa đường thẳng và mặt phẳng song song + Dạng 4. Khoảng cách giữa hai mặt phẳng song song + Dạng 5. Khoảng cách giữa hai đường thẳng chéo nhau