Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán khó về quan hệ vuông góc

Tài liệu gồm 111 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển chọn các bài toán hay và khó về chủ đề vectơ trong không gian, quan hệ vuông góc, thuộc chương trình Hình học 11 chương 3, có đáp án và lời giải chi tiết. 1. Phương pháp vector Đây là một phương pháp rất mạnh để xử lý các bài toán có yếu tố vuông góc ví dụ như hình hộp chữ nhật, hình lập phương, khối tứ diện đều. 1.1 Cơ sở của phương pháp vector. + Quy tắc hình hộp. + Quy tắc trọng tâm tứ diện. + Quy tắc đồng phẳng. 1.2 Các dạng toán và phương pháp giải. Dạng toán 1 . Chứng minh đẳng thức vector. Sử dụng quy tắc cộng, quy tắc trừ ba điểm, quy tắc trung điểm đoạn thẳng, trọng tâm tam giác, trọng tâm tứ giác, quy tắc hình bình hành, quy tắc hình hộp … để biến đổi vế này thành vế kia. Dạng toán 2 . Ba vector đồng phẳng và bốn điểm đồng phẳng. + Để chứng minh ba vector a, b, c đồng phẳng ta có thể thực hiện theo một trong các cách sau: 1. Chứng minh giá của ba vector a, b, c cùng song song với một mặt phẳng. 2. Phân tích c = ma + nb trong đó a, b là hai vector không cùng phương. + Để chứng minh bốn điểm A, B, C, D đồng phẳng ta có thể chứng minh ba vector AB, AC, AD đồng phẳng. Ngoài ra có thể sử dụng kết quả quen thuộc sau: Điều kiện cần và đủ để điểm D thuộc (ABC) là với mọi điểm O bất kì ta có OD = xOA + yOB + zOC trong đó x + y + z = 1. Tính chất trên gọi là tâm tỉ cự trong không gian. Dạng toán 3 . Tính độ dài đoạn thẳng. Để tính độ dài của một đoạn thẳng theo phương pháp vector ta sử dụng cơ sở a2 = |a|2 ⇒ |a| = √a2. 2. Ứng dụng của phương pháp Vector trong một số bài toán đặc biệt 2.1 Góc tạo bởi hai cạnh bất kì của một tứ diện. 2.2 Bổ đề về đường trung bình. 2.3 Ứng dụng trong một số bài toán cực trị. 3. Tuyển tập các bài toán trắc nghiệm khó

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm vectơ trong không gian
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vectơ trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Chứng minh các đằng thức vectơ, chứng minh 3 vectơ đồng phẳng. Dạng 2: Tính độ dài đoạn thẳng, góc giữa hai vectơ, chứng minh 2 đường thẳng vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018
Tài liệu gồm 379 trang tổng hợp câu hỏi và bài tập trắc nghiệm vectơ trong không gian, quan hệ vuông góc có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở GD – ĐT trên cả nước. Trích dẫn tài liệu trắc nghiệm quan hệ vuông góc trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 45 độ. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng? (Số đo góc được làm tròn đến hàng đơn vị). [ads] + (THPT Sơn Tây – Hà Nội – lần 1 – NH 2017 – 2018) Cho lăng trụ ABC.A’B’C’ có các mặt bên là hình vuông cạnh a. Gọi D, E lần lượt là trung điểm các cạnh BC, A’C’. Tính khoảng cách giữa hai đường thẳng AB’ và DE theo a. + (THPT Tam Phước – Đồng Nai – lần 1 – NH 2017 – 2018) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a, H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD. Tính khoảng cách từ điểm A đến mặt phẳng (SCD).
429 câu trắc nghiệm chuyên đề quan hệ vuông góc trong không gian - Phạm Văn Huy
Tài liệu gồm 45 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề quan hệ vuông góc trong không gian phân loại theo chủ đề, đáp án nằm cuối tài liệu. Trích dẫn tài liệu : + Cho hình tứ diện OABC với OA, OB, OC đôi một vuông góc và OA = OB = OC. Gọi I là trung điểm của BC, J là trung điểm AI, Gọi K, L lần lượt là hình chiếu vuông góc của O lên AI và của J lên OC. Chọn khẳng định đúng trong các khẳng định sau? A. Đoạn vuông góc chung của AI và OC là JLQ B. Đoạn vuông góc chung của AI và OC là IC C. Đoạn vuông góc chung của AI và OC là OK D. Các khẳng định trên đều sai [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường thẳng vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường thẳng này và vuông góc với đường thẳng kia B. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kỳ thuộc a tới mp(P) C. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kỳ trên b D. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia B. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó C. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia D. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó