Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Huệ Đắk Lắk

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Huệ Đắk Lắk Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Huệ – Đắk Lắk mã đề 101 gồm 03 trang, đề được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 30 câu, chiếm 60% số điểm, phần tự luận gồm 05 câu, chiếm 40% số điểm, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải tự luận mã đề 101, 102, 103, 104. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Huệ – Đắk Lắk : + Trong các câu sau đây, câu nào là mệnh đề? A. Bạn có học chăm không? B. Buồn ngủ quá! C. Hà Nội là thủ đô của Việt Nam D. x^2 – 2 > 2x + 1. + Tìm các cạnh của một thửa ruộng hình chữ nhật. Biết chu vi 250m và khi tăng chiều rộng lên hai lần và giảm chiều dài xuống ba lần thì chu vi thửa ruộng không đổi. + Cho tam giác ABC, có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là các đỉnh A, B, C?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Xác định a, b, c để parabol (P): y = ax2 + bx + c đi qua ba điểm A(1;4), B(-1;20) và C(2;2). + Cho tam giác ABC có AB = 10; AC = 6; góc BAC = 60 độ. Tính độ dài cạnh BC và độ dài đường cao AH của tam giác ABC. + Cho 2 =< x =< 5. Tìm GTNN của hàm số f(x) = (2 – x)√(5 – x).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Marie Curie - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;0), B(4;5) và C(8;-1). Chứng minh rằng tam giác ABC cân. Tìm tọa độ chân đường cao H kẻ từ đỉnh A của tam giác ABC. + Tìm tất cả các giá trị của tham số m để phương trình √(2x^2 – x + m) = x – 2 có nghiệm. + Cho hàm số y = -2×2 + 4x + 6 có đồ thị là parabol (P). a) Tìm tọa độ đỉnh I và phương trình trục đối xứng của parabol (P). b) Tìm tọa độ giao điểm của đồ thị (P) và trục hoành. Tính khoảng cách giữa hai giao điểm đó.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Trung Trực - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong mặt phẳng tọa độ Oxy cho A (–2;–2), B (3;8), C (6;2). a) Chứng minh A, B, C là ba đỉnh của tam giác và tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm điểm D sao cho ABCD là hình bình hành và tìm tọa độ tâm I của hình bình hành. c) Chứng minh tam giác ABC vuông và tính diện tích của tam giác. d) Tìm tọa độ H là chân đường cao hạ từ đỉnh góc vuông xuống cạnh huyền của tam giác ABC. + Định tham số m để phương trình sau có tập nghiệm là R: m2(x + 1) – 1 = (4 – 3m)x. + Định tham số m để phương trình: (m + 1)x2 + 2(m – 2)x + m = 0 có hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho Parabol (P): y = -x2 – 2x + 2 và đường thẳng (d): y = 2x – 3. a) Lập bảng biến thiên và vẽ đồ thị (P). b) Tìm giao điểm của (P) và (d). + Cho tam giác ABC, có tọa độ các đỉnh A(2;4), B(1;2), C(6;2). a) Tìm tọa độ trung điểm của cạnh AC và trọng tâm G của tam giác ABC. b) Chứng minh ABC là tam giác vuông và tính diện tích tam giác ABC. c) Xác định tọa độ điểm D sao cho ABCD là hình bình hành. + Giải các phương trình sau.